

UNIVERSIDADE FEDERAL DA PARAÍBA (UFPB) CENTRO DE CIÊNCIAS SOCIAIS APLICADAS (CCSA) DEPARTAMENTO DE FINANÇAS E CONTABILIDADE (DFC) CURSO DE CIÊNCIAS ATUARIAIS (CCA)

JUSSARA MARY RIBEIRO DA SILVA

UM ESTUDO DA CARTEIRA DE DIVIDENDOS COMO UM MEIO PARA APOSENTADORIA

JUSSARA MARY RIBEIRO DA SILVA

UM ESTUDO DA CARTEIRA DE DIVIDENDOS COMO UM MEIO PARA APOSENTADORIA

Trabalho de Conclusão de Curso para o curso de Ciências Atuariais na UFPB, como requisito parcial à obtenção do título de bacharel em Ciências Atuariais.

Orientador: Prof. Me. Filipe Coelho de Lima Duarte

JOÃO PESSOA 2019

Catalogação na publicação

Seção de Catalogação e Classificação

S586e Silva, Jussara Mary Ribeiro da.

Um Estudo da Carteira de Dividendos como um meio para Aposentadoria / Jussara Mary Ribeiro da Silva. - João Pessoa, 2019.

51 f.

Orientação: Prof Me Filipe Coelho de Lima Duarte.

Monografia (Graduação) - UFPB/CCSA.

 Carteira de Dividendos. 2. VGBL. 3. Aposentadoria.
 Investimentos. I. Duarte, Prof Me Filipe Coelho de Lima. II. Título.

UFPB/CCSA

JUSSARA MARY RIBEIRO DA SILVA

UM ESTUDO DA CARTEIRA DE DIVIDENDOS COMO UM MEIO PARA APOSENTADORIA

Trabalho de Conclusão de Curso para o curso de Ciências Atuariais na UFPB, como requisito parcial à obtenção do título de bacharel em Ciências Atuariais.

BANCA EXAMINADORA

Prof. Me. Filipe Coelho de Lima Duarte (Orientador)

Universidade Federal da Paraíba

Profa. Ma. Ionara Stefani Viana de Oliveira (Examinadora)

Universidade Federal da Paraíba

Prof. Dr. Luiz Pelipa de Araujo Pontes Girão (Examinador)

Universidade Federal da Paraíba

"Meus irmãos, considerem motivo de grande alegria o fato de passarem por diversas provações, pois vocês sabem que a prova da sua fé produz perseverança." (Tiago 1:2-3)

AGRADECIMENTOS

Agradeço primeiramente ao Senhor Deus, que me capacitou para ingressar na graduação, que me deu saúde, muita força, fé e perseverança para superar todos os momentos difíceis com os quais eu me deparei ao longo do curso, à minha mãe Tereza Carmem por ter sempre acreditado em mim até quando eu já queria desistir, que é abundantemente usada pelo Espírito Santo para me aconselhar o melhor e a buscar os meus objetivos, sempre me ajudando, me motivando; ao meu pai José Pedro e ao meu avô João Batista de Araújo que me proporcionaram, com sua total presença, o compromisso de levar e buscar na universidade bem como me motivar muito nos estudos.

Agradeço ao meu varão Claudimar Andrews, que está sempre me apoiando, dando carinho, compreensão, tranquilidade e muito incentivo. Obrigado, amor da minha vida e servo de Deus, por aguentar tantas crises de estresse, ansiedade e tudo mais, de estar comigo em todos os momentos, pois sem você do meu lado esse trabalho não seria possível. Ser uma atuária é um sonho que veio se concretizando desde quando se via vários talões pagos e guardados pela minha avó Carminha que me criou e me educou desde bem mais nova, e vinha sempre a curiosidade do porque ela contribuía com a previdência, bem como o interesse pelas finanças desde o ensino fundamental, de trabalhar num escritório de finanças, sabendo lidar com Matemática elementar ou até um pouco mais avançada, a área de pesquisa com maior profundidade, organizar documentos mais específicos, dentre outros.

Agradeço a todos os professores, especialmente ao orientador professor Filipe Duarte. Obrigado, mestre, por exigir de mim muito mais do que eu imaginava ser capaz de fazer; à professora Anna Paola Fernandes, Felipe Pontes, Edmery Tavares, Samara Lauar, dentre tantos outros que, tanto como o meu orientador, contribuíram com a minha trajetória acadêmica, por serem tão atenciosos e pacientes comigo na universidade, manifesto aqui a minha gratidão por compartilharem de seus conhecimentos e as suas experiências, como também a todos os meus amigos que são para a vida toda fora da universidade, agradeço por toda a força, incentivo e apoio incondicional, aos funcionários de Ciências Contábeis e de Atuariais da Biblioteca Setorial do CCSA e da empresa terceirizada, agradeço pela disponibilidade de materiais e de tempo, comodidade e auxílio.

RESUMO

O presente trabalho teve como objetivo analisar de que maneira a carteira de Dividendos para a aposentadoria por ações se torna uma alternativa viável comparando com o plano de previdência privada entre os anos e 2008 a 2018. Os dividends yields, rendimentos gerados ao investidor de várias ações com o pagamento de Dividendos foram simulados pelo Economática, tendo em vista que foram incluídas as oito ações com as maiores participações na carteira do Índice de Dividendos do BM&FBOVESPA (IDIV). Para a coleta e tratamento dos dados do respectivo trabalho foram utilizados como base os estudos metodológicos de Arnôr e Rodrigues (2018) como também o de Schneider (2009), tem se que se analisaram os Dividendos e a previdência privada aberta no modo VGBL e também investimentos de longo prazo. Na análise dos resultados foi realizada uma verificação na qual um indivíduo permaneceria com seu investimento na previdência privada aberta no modo de tributação VGBL de acordo com o Valor Atual dos Beneficios Futuros a serem recebidos, e que tenha o retorno da Carteira de Dividendos como um complemento para aumentar o seu patrimônio, de modo que, posteriormente, reinvista o valor acumulado aumentando significativamente a sua liquidez. O presente trabalho apresentou a totalidade dos resultados esperados que, o retorno da Carteira de Dividendos é uma alternativa viável quanto ao plano de previdência, mas como um complemento para a pessoa que vai se aposentar pelo plano citado, e, por mostrar limitações quanto aos estudos anteriores, é válido para futuras pesquisas, analisar o ganho de conhecimento de que uma pessoa física se aposente somente com os Dividendos ou pela previdência privada desconsiderando a previdência social, tendo em vista várias alternativas para se investir, como em Fundos de Investimentos e em Títulos Públicos Federais do Tesouro Nacional.

Palavras-chave: Carteira de Dividendos. VGBL. Aposentadoria. Investimentos.

ABSTRACT

The present paper had as objective to analyze how the Dividend portfolio for retirement by actions becomes a viable alternative by comparing with the private pension plan between the years and 2008 to 2018. The income generated in yields, investors of various actions with the payment of dividends were simulated by the Economática, considering that included the eight largest stock holdings in the portfolio of Dividend Index BM & FBOVESPA (DIVI). For the collection and processing of data of the respective paper were used as the basis of the methodological studies of Arnôr and Rao (2018) as well as the Schneider (2009), has that analyzed the dividends and the open private pension and VGBL mode also long-term investments. In the analysis of the results was carried out a check on which an individual would remain with your investment in private pension plan open in VGBL taxation according to the current value of the future benefits to be received, and the return of Dividend portfolio as a supplement to increase your wealth, so that then reinvest the earned value significantly increasing your liquidity. This paper has presented all of the expected results, the return of Dividends is a viable alternative as the pension plan, but as a complement to the person who will retire by the plan cited and show limitations as to previous studies, is valid for future research, analyze the gain of knowledge that an individual retire only with dividends or by private pension plan disregarding the social security system, with a view to several investing alternatives, such as investment funds, and in federal public securities of national treasure.

Keywords: Portfolio of Dividends. VGBL. Retirement. Investments.

LISTA DE TABELAS

Tabela 1 - As 33 empresas que compõem o Índice de Dividendos BM&FBOVESPA	A (IDIV)
	24
Tabela 2 - Beneficio Anual na Idade de Aposentadoria para o Sexo Masculino	25
Tabela 3 - Beneficio Anual na Idade de Aposentadoria para o Sexo Feminino	25
Tabela 4 - Carteira Hipotética de Dividend Yield	26
Tabela 5 - Retorno Anual de cada ativo da Carteira Hipotética	28
Tabela 6 - Retorno (DY), Valor Investido e Valor Futuro	28
Tabela 7 - Valor Atual dos Beneficios Futuros para o Sexo Masculino	29
Tabela 8 - Valor Atual dos Beneficios Futuros para o Sexo Feminino	30

LISTA DE ABREVIATURAS E SIGLAS

DY Dividend Yield

IDIV Índice de Dividendos

IR Imposto de Renda

S.A. Sociedade Anônima

Tábua BR-EMS Tábua de Mortalidade e Sobrevivência

VABF Valor Atual dos Beneficios Futuros

SUMÁRIO

1 INTRODUÇÃO	12
1.1 Questão de Pesquisa	14
1.2 Objetivos	14
1.2.1 Objetivo Geral	14
1.2.2 Objetivos Específicos	14
2 REVISÃO DA LITERATURA	15
2.1 Dividendos e Investimento em Ações	15
2.2 Carteira de Dividendos	17
2.3 Modelo de Aposentadoria e a Previdência Privada Aberta	19
3 METODOLOGIA	21
3.1 Coleta e Tratamento dos Dados	21
3.2 Projeção da Carteira de Dividendos	21
3.3 Simulação de Cenários de Aposentadoria	22
3.3.1 Dados dos Segurados, Premissas Atuariais e Retornos de Dividendos	23
4 ANÁLISE DOS RESULTADOS	28
5 CONSIDERAÇÕES FINAIS	36
REFERÊNCIAS	37

1 INTRODUÇÃO

O presente trabalho tem como justificativa para o tema proposto, a importância da viabilidade de uma pessoa física investir em uma carteira de Dividendos, partindo do pressuposto de que a mesma, simulada em longo prazo, tenderá a ser uma complementação para a sua aposentadoria.

Segundo Amaral (2013), a previdência é um modelo de poupança de longo prazo com o objetivo de fazer uma manutenção da renda da pessoa no período em que ele vai se aposentar, porém, a preocupação com essa preservação do padrão de vida na aposentadoria contribuiu com o desenvolvimento da previdência complementar ou privada.

Argumenta-se que as entidades de previdência privada aberta são geralmente pessoas jurídicas, constituídas unicamente sob a forma de sociedade anônima (S.A.), e têm por objetivo instituir e operar planos de benefícios de caráter também de previdência, concedidos em forma de renda do indivíduo ou pagamento único, acessíveis a qualquer tipo de pessoa física (SCHOSSLER; CONTO, 2015).

Schossler e Conto (2015) falam que a busca pela previdência privada como meio de complemento para a aposentadoria do indivíduo sugere cuidados, como, por exemplo, observar quais tipos se deve contratar, os custos administrativos, suas modalidades, rentabilidade, porém, a forma de tributação na contratação, haja vista que, posteriormente, com referência ao produto contratado, à forma como foi escolhida não poderá ser alterado e os planos da previdência privada, poderão se tornar uma alternativa de produtos de longo prazo para investidores, tanto no que se refere à rentabilidade das aplicações quanto no aspecto fiscal.

De acordo com Amaral (2013), o Vida Gerador de Benefícios Livres é um tipo de plano dentro da previdência privada aberta, que garante cobertura no caso de o indivíduo sobreviver, que vai garantir o pagamento do capital segurado, pela sobrevivência do segurado ao período contratado, ou pela adesão, com pagamento único, de renda imediata e temporária ou diferida e assim, funciona como um plano de previdência para o indivíduo, e vale destacar também que a sua criação se teve com base no Plano Gerador de Benefícios Livres, no ano de 2001.

Schiroky (2007) diz que várias opções para investir estão no mercado, onde as ações negociadas na Bolsa de Valores de São Paulo, podem se tornar uma alternativa para aqueles que

possuem tal possibilidade. Entretanto, o investidor, segundo o autor citado, analisando que o risco de sua carteira seja minimizado pela diversificação, e que o retorno esperado desse investimento não seja prejudicado, analisa a possibilidade de investimento na Bolsa de Valores, ainda tendo sua tomada de decisão com base na dicotomia de risco-retorno da teoria das carteiras de Markowitz.

Assim, é evidente que, uma renda poderá ser alongada para ser recebida a curto ou a longo prazo, dependendo de quem seja a pessoa, e que estas pessoas contribuem para a elaboração de referência a um valor significativo da renda.

Segundo Castelão (2012), tem-se em vista a obtenção de poupança futura para a manutenção do consumo e da qualidade de vida do indivíduo, a educação previdenciária surgiu como a principal condição para ser atingido o patamar de poupança que se deseja e, sabendo da situação da previdência social brasileira, a previdência privada começa a ser vista como uma alternativa para assegurar rendas futuras aos contribuintes.

No entanto, os cidadãos brasileiros tem um padrão de consumo considerável, apresentando pouca preocupação com relação à poupança financeira e pouco interesse pela fase pósaposentadoria, levando-se em consideração o pouco conhecimento sobre os planos de previdência, como também no que diz respeito à escassez de informações e conhecimentos, o quanto de tempo de vida que a pessoa ainda irá ter e as questões financeiras que influenciam quanto ao investimento na previdência privada, e os trabalhadores com suas atividades ativas estão se aposentando mais tarde, com o intuito de ter uma qualidade de vida melhor e evitar a descapitalização financeira após os anos de contribuição da vida laborativa (CASTELÃO, 2012).

Portanto, mesmo com a falta de melhores informações e conhecimentos perante a educação previdenciária, Fernandes (2014) afirma que os planos de previdência aberta estão se popularizando no Brasil e os consumidores passam a ter uma série de alternativas para investir seu dinheiro e poupá-lo em longo prazo.

Na medida em que se leva em consideração apenas a simulação da previdência privada aberta, sem qualquer proporção de inclusão de variáveis, para atribuir às contribuições e recebimento de rendas mensais, hipoteticamente não teria o mesmo valor de resgate como o rendimento da carteira de Dividendos compostos pelas ações. É necessário ponderar que o tipo de investidor em questão poder ter em mente a alternativa de aumentar os seus retornos anuais acumulados para a sua idade de aposentadoria sem ser pela previdência social.

Dessa forma, pode-se afirmar que o trabalho em avaliação pretende analisar de que maneira as pessoas podem se aposentar sem depender apenas da previdência social, visto que elas, além de trabalhar para receber o mínimo mensalmente, têm dificuldades quando começam a se desligar das atividades de mão de obra.

1.1 Questão de Pesquisa

No que diz respeito à carteira de Dividendos destinados a aposentadoria por ações, o presente trabalho traz a seguinte questão de pesquisa: Como a carteira de Dividendos para a aposentadoria por ações seria uma alternativa viável comparado aos planos de previdência privada entre os anos de 2008 a 2018?

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral deste trabalho é analisar de que maneira a carteira de Dividendos para a aposentadoria por ações se torna uma alternativa viável, comparando com o plano de previdência privada entre os anos e 2008 a 2018.

1.2.2 Objetivos Específicos

- Verificar a rentabilidade média da Carteira de Dividendos de 2008 a 2018;
- Simular cenários de planos de previdência privada por intermédio de cálculos atuariais, tendo como base a tábua de Mortalidade (BR-EMS);
- Comparar os investimentos do retorno da Carteira de Dividendos com o benefício na idade de aposentadoria no intuito de verificar a viabilidade em longo prazo.

2 REVISÃO DA LITERATURA

Na revisão da literatura, está a construção teórica feita ao longo do desenvolvimento do trabalho. A parte mais abrangente são os principais conceitos de cada assunto utilizado e abordado nos próximos tópicos em forma sequencial, dos quais, estão os chamados Dividendos e o Investimento em Ações feitas pelas pessoas físicas, Carteira de Dividendos, Modelo de Aposentadoria e a Previdência Privada Aberta, que são para estudo, coleta e análise dos dados nas seções de Metodologia e Análise dos Resultados Obtidos, bem como as Considerações Finais.

2.1 Dividendos e Investimento em Ações

O chamado Dividend Yield ou simplesmente rendimento de Dividendo segundo Bueno (2002), é de tal magnitude que este foi um dos indicadores utilizados para se corroborar a teoria de que o mercado acionário norte-americano vivia um período de "exuberância irracional", isto é, as ações estariam tão caras que o risco de abrupta correção ou crash era iminente. Ainda segundo o autor, os rendimentos dos Dividendos não são a única fonte de recursos do fluxo de caixa para as pessoas, pois também tem a opção o ganho de capital decorrente da venda de suas ações. A partir da diferença de tributação a favor dos ganhos de capital, foi criada a Teoria da Preferência Tributária que defende uma política de baixos Dividendos a fim de que sejam maximizados os valores das ações.

Loss e Neto (2006) atribuem que a decisão da pessoa sobre onde investir deve ser levada em consideração com base na produção empresarial, com retorno superior ao custo de capital empregado a uma dada taxa de risco, e que não leva em consideração as preferências de um investidor e independe do momento em que ele deseja consumir ou não sua riqueza ao longo do tempo que queira.

Ainda assim, sobre a política de Dividendos e investimentos, Loss e Neto (2006) afirmam que a pessoa que investe em ações se adéqua à política de distribuição de lucros adotada pela gestão empresarial, no que se refere ao próprio consumo, porém, se estes não recebem Dividendos no dia, esperam que no futuro haja um retorno que justifique tal retenção (mais Dividendos ou ganhos de capital).

Segundo os estudos de Mota e Junior (2007), os Dividendos geram um comprometimento de longo prazo para a companhia, porque reduzem a distribuição que geram a depreciação do valor de cada ação, assim não ocorre no caso das recompras de ações, que podem ser utilizadas para distribuições esporádicas e estes rendimentos propiciam aos acionistas a possibilidade de diferir o imposto a ser pago sobre os ganhos de capital, já que eles podem ser realizados no momento em que a pessoa desejar.

Schneider (2009) fala que os Dividendos representam dinheiro no momento que está sendo recebido e, tendo menor risco, com a preferência que este recebimento esteja de acordo com a expectativa futura de ganhos de capital e, assim, os investidores terão a preferência quanto ao recebimento de Dividendos do que os eventuais ganhos de capital no futuro.

A teoria do pássaro na mão diz que boa parte dos investidores planeja fazer reinvestimentos de seus Dividendos em ações da mesma entidade ou de outras do mesmo ramo, sendo que o risco dos fluxos de caixa da empresa para os Dividendos de longo prazo passa por uma determinação com relação aos fluxos de caixa operacionais e não pela política de distribuição de Dividendos (SCHNEIDER, 2009).

A busca por liquidez com relação aos ativos atrai empresas que pagam altos retornos de Dividendos, e, consequentemente, isso faz com que a demanda por esses papeis seja maior, aumentando o valor da ação. O efeito clientela no que diz respeito aos Dividendos, são uma espécie de tendência dos investidores na compra de ações de empresas que possuem política de Dividendos que se relacionam perfeitamente com as suas preferências por Dividendos altos, baixos ou nulos (SCHNEIDER, 2009).

De acordo com a Lei das Sociedades Anônimas (Lei 6.404/76), o Dividendo em si é obrigatório em cada exercício social das empresas mediante a parcela dos lucros estabelecida no estatuto ou, se este for omisso, a importância determinada de acordo com as seguintes normas:

- I metade do lucro líquido do exercício diminuído ou acrescido dos seguintes valores:
- a) Importância destinada à constituição da reserva legal (art. 193 da lei das S/A); e
- b) Importância destinada à formação da reserva para contingências (art. 195 da Lei das S/A) e reversão da mesma reserva formada em exercícios anteriores;
- II o pagamento do Dividendo determinado nos termos do item i poderá ser limitado ao montante do lucro líquido do exercício que tiver sido realizado, desde que a diferença seja registrada como reserva de lucros a realizar (art. 197 da lei das s/a);

III - os lucros registrados na reserva de lucros a realizar, quando realizados e se não tiverem sido absorvidos por prejuízos em exercícios subsequentes, deverão ser acrescidos ao primeiro Dividendo declarado após a realização.

Segundo Lopes (2014), o investidor brasileiro no que se refere àquele que tem a característica de investidor sendo individual, vem cada vez mais buscando formas de conhecer e interagir com o mercado acionário.

Estudos da Literatura feitos por Juvercina Sobrinho (2016) relatam que a assimetria informacional, em particular a presença de informação privilegiada, significa que nem toda informação relevante é de domínio público, sendo uma oportunidade aos investidores para ganhar lucros extras caso consigam desmascarar algumas informações internas, que, no mercado financeiro, a informação assimétrica é a situação em que o usuário do capital sabe muito mais sobre suas perspectivas e problemas do que o fornecedor de capital.

Barsi (2017) argumenta que o Dividendo é uma forma de remuneração em que as empresas fazem aos seus acionistas de diferentes períodos, onde isso é feito em dinheiro e é anunciada pelo Conselho de Administração e então é estabelecida uma data para o seu pagamento.

Além disso, são parte que as pessoas físicas têm dos lucros da empresa que o propriamente serão adquiridos, uma vez que podem ser sócios desta empresa ou não, e o recebimento desses Dividendos devem ser obrigatoriamente proporcionais à quantidade de ações possuídas, ou seja, quanto maior o número de ações, maior será o valor de Dividendos recebidos (BARSI, 2017).

Portanto, o presente trabalho estuda a relação que existe entre a pessoa física e seus investimentos alternativos, de forma que ele consiga os seus retornos significativos de Dividendos, que na seção metodologia e análise dos resultados serão mais descritos detalhadamente com suas vantagens, desvantagens e as alternativas existentes.

2.2 Carteira de Dividendos

Bueno (2002) argumenta que estudos ou modelos de avaliações empresariais almejam descobrir diferentes estratégias de investimento em ações de modo a construir carteiras de ações capazes de oferecerem retornos superiores aos índices de mercado, como também diz que Graham e Dodd, dois importantes defensores da Tradicional Teoria de Portfólios, foram os primeiros a

defenderem o fluxo de Dividendos como critério de seleção de ações foi no início da década de 1930.

Miotto (2003) fala que é mais rentável para o investidor, em longo prazo, investir nas ações das empresas que adotam políticas de altos retornos de Dividendos anuais. Segundo resultados da pesquisa desse autor, não pode fazer uma avaliação no que diz respeito até que ponto os Dividendos influenciam nos ganhos de capital, porém, há fortes indícios de influência, pois as ações que pagaram menores taxas de Dividendos foram as que apresentaram maiores perdas de capita (MIOTTO, 2003, p. 62).

No que se refere à corrente tradicional, que trata especialmente da política de Dividendos e da sua relação com maximização da riqueza dos acionistas, ela tem a proposta de defesa com relação à distribuição de Dividendos altos como forma de amenizar a insegurança proporcionada por um investimento em ações e, dessa forma, o investidor, ao montar uma carteira de ações de empresas que adotem esta política de Dividendos, trocaria a insegurança de possíveis ganhos de capital por seguras distribuições de lucros em longo prazo (MIOTTO, 2003).

Segundo Schneider (2009), uma das maneiras de distribuição de Dividendos aos acionistas dos ganhos de um ativo, esses Dividendos tem função importante com relação à escolha entre reinvestir os seus recursos ou tornar real o retorno à pessoa física que investe em ações. A teoria do "pássaro na mão", segundo o mesmo, está relacionada à lógica de que os Dividendos são melhores do que os ganhos de capital, pois os Dividendos são certos de que o investidor irá receber pelo investimento, e essa teoria traduz que, é por esta razão que os investidores que possuem aversão ao risco, têm preferência quanto aos Dividendos do que os ganhos de capital, que não são certos quanto ao recebimento.

De acordo com Juvercina Sobrinho (2016), tendo como base a importância dos fundos de investimentos, é necessário que os investidores partam principalmente da metodologia de analisar as carteiras de investimentos, que nesse caso se trata da carteira de investimentos em Dividendos, sendo confiáveis e precisas.

Na pesquisa em avaliação, uma das limitações está no que diz respeito aos *Dividend Yield*, pois a Carteira Hipotética foi construída através de uma seleção referente a cada ação com as maiores participações, que, por sua vez, não é muito recomendado buscar e investir em empresas que fornecem dividendos altos, pois em longo prazo poderá haver um prejuízo significativo com relação ao capital investido pelos indivíduos.

2.3 Modelo de Aposentadoria e a Previdência Privada Aberta

De acordo com o trabalho de Schossler e Conto (2015), a previdência é definida como um tipo de sistema criado para garantir aos trabalhadores que contribuem para a mesma, uma renda futura estável para o próprio indivíduo que exerce atividade e para a família dele.

Ainda assim, as entidades abertas de previdência privada são simplesmente pessoas jurídicas constituídas de forma única, formadas por sociedades anônimas e têm objetividade em instituir e operar planos de benefícios de caráter relacionado à previdência, concedidos em forma de renda continuada ou pagamento único, acessíveis a qualquer pessoa física, bem como que essas entidades de previdência privada são ditos planos de previdência acessíveis a qualquer pessoa física que tenha o interesse em complementar a sua renda futura sem qualquer obrigatoriedade que não aderiu ao respectivo plano por meio de contribuições regulares e requeridas como, por exemplo, pelo governo (SCHOSSLER E CONTO, 2015).

Quanto aos modelos de aposentadoria, o trabalho destaca o modelo de previdência privada do tipo aberta, sendo esta que se classifica de duas maneiras diferentes: pelo Plano Gerador de Benefício Livre (PGBL) e o Vida Gerador de Benefícios Livres (VGBL), ambos que são adotados geralmente no Brasil. Pode-se afirmar que o presente trabalho irá simular cenários de pessoas relacionando à renda delas com o plano VGBL como já citado anteriormente, comparado com o retorno da carteira de Dividendos apresentada como uma renda complementar de longo prazo.

No Plano Gerador de Benefício Livres, as pessoas que contribuem, tem a escolha optativa por abater o imposto de renda no momento do saque do valor total, indicado para pessoas que exercem atividades nas empresas, com uma renda mensal mais elevada, e já no outro tipo de previdência privada aberta, denominada Vida Gerador de Benefício, a incidência do imposto de renda (IR) interfere apenas sobre os rendimentos acumulados durante o período do plano do indivíduo, e não no valor total a ser sacado no final do prazo da aposentadoria.

De acordo com Amaral (2013), o VGBL possui as seguintes características, das quais, a cobrança do IR, isto é, o imposto de renda, é sobre o rendimento das aplicações ou da aplicação no ato do resgate, e é recomendado para as pessoas contribuintes que realizam a declaração do imposto de renda simplificada, pois não é aproveitado o benefício fiscal.

De acordo com Arnôr e Rodrigues (2018), os planos de previdência privada proporcionam aos investidores uma renda mensal que poderá ser vitalícia, por tempo determinado ou em

pagamento único. O VGBL funciona como sendo um seguro de vida, que oferece concessão de indenizações em vida ao participante segurado, bem como a tributação do Imposto de Renda, a qual só acontece sobre os rendimentos no momento do resgate do valor acumulado do investimento (ARNÔR E RODRIGUES, 2018).

Segundo Arnôr e Rodrigues (2018), para quem pretende realizar um investimento em longo prazo, o plano VGBL, pela tributação regressiva, é o mais indicado, pois depois de 10 anos de contribuição a alíquota do Imposto de Renda reduz para 10%, uma vantagem em relação a outros fundos de investimentos.

Nas seções posteriores, será calculado e analisado para ambos os sexos os benefícios anuais em cima da redução do imposto de renda após 10 anos do pagamento do aporte total, onde esse tipo de investimento será deduzido das despesas administrativas que se dá pelo plano do Vida Gerador de Benefícios Livres, para que no momento do resgate, a pessoa física receba sem tantos tributos que o reduzem para sua aposentadoria.

3 METODOLOGIA

3.1 Coleta e Tratamento dos Dados

Para a coleta e tratamento dos dados do respectivo trabalho foram utilizados como base os estudos metodológicos de Arnôr e Rodrigues (2018) como também o de Schneider (2009), tem se que se analisaram os Dividendos que, por sua vez, tem função importante com relação à escolha entre reinvestir os seus recursos ou tornar real o retorno à pessoa física que investe em ações e a previdência privada aberta no modo VGBL, do qual este é recomendado para as pessoas contribuintes que realizam a declaração do imposto de renda simplificada, pois não é aproveitado o benefício físcal, e também investimentos de longo prazo.

Assim, a análise de resultados, na devida coleta e o tratamento dos dados dessa seção, além da descoberta em hipótese do valor que será aportado ou contribuído pelo investidor, dentro das perspectivas de que a Carteira de Dividendos trará um retorno significativo pelo Economática através do índice IDIV, também será atribuída, a tributação regressiva no modo VGBL, de modo que quando chegar à idade de aposentadoria do indivíduo, o valor respectivo que ele pagou no início, será dividido em rendas anuais até o final de sua vida.

3.2 Projeção da Carteira de Dividendos

Schineider (2009) afirma que o *Dividend Yield* é o rendimento gerado ao investidor de uma ação com o pagamento de Dividendos, sendo que um *Dividendo yield* é obtido pela seguinte Equação 1:

$$(DY) = \frac{Proventos pagos por ação no período}{Preço da Ação por período}$$
(1)

Em que:

- (DY) = Rendimento de Dividendos;
- Proventos pagos por ação no período = São os Dividendos que as empresas oferecem aos acionistas;
- Preço da Ação = Preço de fechamento da ação de 1 de Janeiro de 2008 a 31 de Dezembro de 2018.

Dado que o índice de Rendimento de Dividendos é uma fração, e é preciso ter cuidado quanto à avaliação desse indicador, pois, como no denominador se encontra o preço da ação, ele pode parecer alto se o preço da ação for muito baixo, que na prática pode estar refletindo é algum tipo de problema com a entidade e não uma boa política de distribuição ou pagamento de Dividendos (SCHNEIDER, 2009, p. 40).

A projeção da Carteira de Dividendos do trabalho em avaliação foi obtida através de uma carteira hipotética do índice IDIV do Economática, de forma que atribuições que são de extrema importância às devidas projeções dos anos de 2008 a 2018, respectivamente.

3.3 Simulação de Cenários de Aposentadoria

A simulação de Cenários de Aposentadoria advém do questionamento de como se realiza o processo de conversão entre dois ou mais investimentos, propondo assim uma avaliação individualizada dos investimentos em estudo como já falado na seção 3.1 e, em seguida, a comparação entre esses dois investimentos que está sendo utilizada para análise desta avaliação, a projeção dos planos apresentados na seção posterior.

Como dito anteriormente, esta simulação de cenários para a aposentadoria se dará com base, inicialmente, em cálculos atuariais da tábua de mortalidade utilizada pelo mercado segurador para a obtenção dos valores das anuidades vitalícias, imediatas e diferidas, bem como os métodos de aposentadoria pela previdência privada aberta para três pessoas de idades diferentes, relacionando as mesmas com as respectivas idades de aposentadoria, das quais foram usadas para as faixas etárias, 45, 50 e 55 anos como idades de referência para o ato do pagamento do aporte total do prêmio de cada um desses investidores, para que, na idade que se pretende os mesmos se aposentarem receberem os seus benefícios em forma de resgate ou de rendas anuais.

3.3.1 Dados dos Segurados, Premissas Atuariais e Retornos de Dividendos

Os segurados de gêneros masculino e feminino têm como idades de entrada no plano de previdência: "45", "50" e "55" anos, sendo estas como faixas etárias que os mesmos se encontram hoje com a finalidade de pagar antecipadamente o aporte total para recebimento do beneficio. Assim, a idade de entrada será identificada como y, a idade de aposentadoria, a variável r, de 55, 60 e 65 anos, como o B_r , a ser recebido a partir da idade de aposentadoria em 'r' de forma vitalícia, Ainda assim, o Beneficio Total (B_r) será obtido pela contribuição hipotética total de R\$50.000,00 chamado de Prêmio Comercial (P^c) resultante da Equação 2; o tempo de diferimento, n que é calculado como a diferença entre a idade de aposentadoria e a idade de entrada, assim como o percentual obtido pela simulação pelo Economática, que se refere ao retorno da Carteira de Dividendos através do Índice de Dividendos (IDIV) que será denominado de R% denominado de Equação 7, e por fim a obtenção do valor do Seguro Dotal Puro ou Seguro de Sobrevivência nas idades dos segurados na Equação 3 para que, com todos esses componentes, as anuidades imediatas e diferidas n/\ddot{a}_x , representada pela Equação 4, o valor do B_r obtido pela Equação 5.

Para os eventos que estão previstos nos cenários simulados, utiliza-se a tábua de mortalidade BR-EMS para os respectivos participantes citados bem como os cálculos nas planilhas; considera-se também a taxa de juros 3% a.a., pois, segundo Gallo (2012), ela é utilizada como taxa de administração em cima do rendimento além da tributação que incide no VGBL, cobrada anualmente sobre o valor total da aplicação onde varia de 1,5% a 4%, bem como a taxa de carregamento que, de acordo com Andrade (2011), seria de 1,2% a.m. transformada para taxa anual é 15,3894%, para calcular o Benefício total sendo na previdência privada aberta, na tributação regressiva do VGBL, com relação ao capital investido que é de R\$50.000,00.

Quanto ao período de 10 anos mediante o cálculo do VGBL, no entanto, se estará levado em consideração o fato de que dada a idade de entrada no plano, de modo que os resultados obtidos demonstrarão qual o benefício acumulado que o participante terá após dez anos após a contratação do plano VGBL no modo de tributação regressiva. Isso se dá porque a alíquota para o cálculo desse plano no período citado passa a ser baixo, e que o B_r, o benefício acumulado anual em 'r' que será obtido pela Equação 5.

Os benefícios das idades de aposentadoria, bem como o retorno dos Dividendos, ambos simulados no trabalho em avaliação, se deram pelas seguintes etapas:

- Primeira etapa: Obtenção do retorno da Carteira de Dividendos a partir do Economática, de forma a utilizar a porcentagem com relação aos cálculos em planilhas posteriores.
- > Segunda etapa: Cálculo do Prêmio Comercial, do qual será retirada a taxa de carregamento vinculado ao VGBL:

$$P^c = \frac{P}{1 - \alpha} \tag{2}$$

Em que:

- P^c = Prêmio Comercial;
- P =Capital investido;
- α = Taxa de carregamento relacionado ao VGBL.
- > Terceira etapa: Cálculo do Seguro Dotal Puro ou Seguro de Sobrevivência;

$${}_{n}E_{x} = \frac{D_{x+n}}{D_{x}} \tag{3}$$

Em que:

- $_nE_x$ = Seguro Dotal Puro;
- D_{x+n} = Função de comutação à idade x+n anos;
- D_x = Função de comutação à idade x anos;

A forma de obtenção do D_x se dá pela Equação 4:

$$D_x = l_x \times v^x \tag{4}$$

Em que:

- l_x = Número de sobreviventes à idade x anos;
- v^x = Fator de desconto atuarial, em que:

$$v^x = \frac{1}{(1+i)^n}$$

Em que:

- i = taxa de juros;
- n = idade do participante, seja masculino ou feminino.
- Quarta etapa: Cálculo da Anuidade imediata e diferida de n anos;

$$_{n/}\ddot{a}_{x} = \frac{N_{x+n}}{D_{x}} \tag{5}$$

Em que:

- n/\ddot{a}_x =Anuidade antecipada, vitalícia, imediata e diferida por n anos;
- N_x = Função de sobrevivência à idade x;
- D_x = Função de sobrevivência à idade x anos.

A forma de obtenção do N_x se dá pelo somatório do D_x da etapa anterior, do qual:

$$N_{x} = \sum_{n=1}^{\omega - x} D_{x+n}$$

Quinta etapa: Cálculo do Benefício total na idade de aposentadoria 'r' relacionando a porcentagem do Prêmio Comercial já investido.

$$P = \frac{B_r \times (n/\ddot{a}_x + X\% \times nE_x)}{1 - \alpha}$$
 (6)

Em que:

- X% = Equivalente à taxa de carregamento anual na tributação do VGBL;
- P = Prêmio Puro resultante da Equação 2;
- n/\ddot{a}_x = Anuidade vitalícia, imediata e diferida de n anos;
- B_r = Benefício Anual que cada segurado começará a receber na idade 'r' de aposentadoria.
- Sexta etapa: Ainda assim, tendo em vista o resultado da Equação 6, é correto afirmar que na Equação 7 poderá ser obtido o Valor Atual dos Beneficios Futuros na Idade de Aposentadoria 'r':

$$VABF = B_r \times \ddot{a}_r \tag{7}$$

- B_r = Benefício Anual que cada segurado começará a receber na idade 'r' de aposentadoria resultante da Equação 6;
- \ddot{a}_r = Anuidade vitalícia e imediata na idade 'r' de aposentadoria;
- *VABF* = Valor Atual dos Benefícios Futuros a serem recebidos pela pessoa física na idade de aposentadoria.
- ➤ Sétima etapa: Levando em consideração a primeira etapa, pode-se afirmar que será calculado de tal forma que, relacionando diretamente com o capital investido de R\$ 50.000,00, dos quais os participantes de ambos os sexos fizeram o investimento considerando retorno dos Dividendos é calculado da seguinte forma pela Equação 8:

$$Valor\ investido\ \times [1 + retorno\ (DY)] = Valor\ Futuro$$
 (8)

Entretanto, o retorno da Carteira de Dividendos pelo Economática, que se deu pela Equação 1, está configurado de acordo com as seguintes estratégias:

- Obter o Dividend Yield de cada ação da carteira hipotética do Índice IDIV pelo Economática, do qual foram selecionadas as 8 empresas para resultar no retorno total a partir de uma Média calculada levando em consideração todos os valores simulados.
- De todas as ações quem compõem o Índice IDIV, as empresas selecionadas deverão estar no rol das 8 que tiveram maiores participações de Dividend Yield obtidos pelo Economática;
- ➤ Oitava etapa: Comparação entre os valores resultantes que serão recebidos do Valor Atual dos Benefícios Futuros e o Retorno da Carteira de Dividendos em valor futuro, que serão detalhadas na análise de resultados com as Equações 7 e 8 para melhor verificação de qual investimento é o mais adequado para a pessoa física.

4 ANÁLISE DOS RESULTADOS

Esta seção apresenta os resultados provenientes da pesquisa. Primeiramente, será apresentado o resultado do benefício mensal na idade de aposentadoria e, posteriormente, os dados referentes ao retorno dos Dividendos, consolidando os cálculos em planilhas separadas, as suas interpretações e a análise comparativa.

A análise dos resultados dos devidos cálculos, que compõem a parte quantitativa da pesquisa, conforme mencionado na seção 3.3.1, foi feita utilizando os métodos de execução das etapas descritas na seção 3. Primeiramente, foi feita a construção da tábua de mortalidade bem como suas demais variáveis para resultar no valor mensal do Benefício de Aposentadoria para ambos os sexos. Em seguida, foram analisadas as 33 empresas que compõem a Índice IDIV do Ibovespa no ano de 2019, conforme a Tabela 1 abaixo, para melhor obtenção das oito ações que possuem as maiores participações nesse índice bem como a média com relação a qual seria o retorno dessa carteira final.

Tabela 1 – As 33 empresas que compõem o Índice de Dividendos BM&FBOVESPA (IDIV)

Código	Ação	Tipo	Participação (%)
ABCB4	ABC BRASIL	PN N2	0,914
BBSE3	BBSEGURIDADE	ON NM	4,554
BRAP4	BRADESPAR	PN N1	4,286
BRKM5	BRASKEM	PNA N1	3,501
BRSR6	BANRISUL	PNB N1	3,296
CCRO3	CCR SA	ON NM	3,599
CMIG4	CEMIG	PN N1	5,339
CPLE6	COPEL	PNB N1	2,501
CSMG3	COPASA	ON EJ NM	2,615
EGIE3	ENGIE BRASIL	ON NM	7,402
ENBR3	ENERGIAS BR	ON NM	3,411
ESTC3	ESTACIO PART	ON NM	5,429
EZTC3	EZTEC	ON NM	1,028
FESA4	FERBASA	PN N1	0,573
GRND3	GRENDENE	ON NM	1,533
HGTX3	CIA HERING	ON NM	2,547
ITSA4	ITAUSA	PN N1	5,21
ITUB3	ITAUUNIBANCO	ON ED N1	4,358
ITUB4	ITAUUNIBANCO	PN ED N1	3,888
LOGG3	LOG COM PROP	ON NM	0,253
MPLU3	MULTIPLUS	ON NM	0,803
MRVE3	MRV	ON NM	2,779
PSSA3	PORTO SEGURO	ON ED NM	3,117
QUAL3	QUALICORP	ON NM	2,536
SANB11	SANTANDER BR	UNT	3,811

SAPR11	SANEPAR	UNT N2	3,415
SLCE3	SLC AGRICOLA	ON NM	1,303
TAEE11	TAESA	UNT N2	3,687
TIET11	AES TIETE E	UNT N2	2,245
TRPL4	TRAN PAULIST	PN N1	4,194
TUPY3	TUPY	ON NM	0,813
UNIP6	UNIPAR	PNB	1,018
VIVT4	TELEF BRASIL	PN	4,042

Fonte: Elaboração própria através dos dados do BM&FBOVESPA, 2019.

4.1 Benefício na Idade de Aposentadoria

Na tabela 2 e 3 abaixo, são representados os benefícios anuais de aposentadoria para os homens e mulheres para as idades 55, 60 e 65 anos.

Tabela 2 – Benefício Anual na Idade de Aposentadoria para o Sexo Masculino.

Sexo Mascul	lino
Idade de aposentadoria	Beneficio Anual
55 anos	R\$ 3.671,15
60 anos	R\$ 4.176,06
65 anos	R\$ 4.898,44

Fonte: Elaboração Própria

Tabela 3 – Benefício Anual na Idade de Aposentadoria para o Sexo Feminino.

Sexo Femin	ino
Idade de aposentadoria	Benefício Anual
55 anos	R\$ 2.318,66
60 anos	R\$ 2.405,38
65 anos	R\$ 2.467,68

Fonte: Elaboração Própria

Podem-se identificar valores crescentes nas três idades apresentadas na tabela 2, no que se refere ao beneficio para a aposentadoria com relação ao sexo masculino, na idade de 55 a 65 anos, que são de R\$ 3.671,15, R\$ 4.176,06 e R\$ 4.898,44, estes que serão recebidos anualmente, como também, que também foi levado em consideração o fato de que quanto maior a idade do segurado, menor será sua expectativa de vida; e, quanto menor sua expectativa de vida, maior será o valor do benefício.

No entanto, como critério comparativo, realizou-se o cálculo do montante a valor presente na idade de aposentadoria que foi representado por meio do VABF, onde foram calculados considerando a sua idade de entrada no plano de previdência privada aberta, estes que possuem os valores para serem incluídas no cálculo dos benefícios, as anuidades vitalícias, imediatas e diferidas de 10 anos, 13,1010051, 11,5057879 e 9,796246031; e os valores dos seguros dotais puros obtidos através de cálculos atuariais em planilha, que são de 0,7154320, 0,7020464 e 0,6813926 respectivamente.

Entretanto, com relação à tabela 3, é apresentado também um crescimento do valor tendo em vista todos os outros componentes, no que se refere aos benefícios nas idades 55, 60 e 65 anos para o sexo feminino, de forma que estas iram receber como quantias anuais, R\$ 2.318,66, R\$ 2.405,38 e R\$ 2.467,68 respectivamente, tendo em vista que, para o sexo feminino, as anuidades citadas no parágrafo anterior são de 20,8027916, 20,0486143 e de 19,5395901 e para os seguros totais puros de 0,7440195, 0,7440196 e de 0,7440198, que também são parecidas em termos de valor para as três idades citadas anteriormente.

Na medida em que se levam em consideração as anuidades imediatas, vitalícias e diferidas de 10 anos e os seguros dotais puros para o sexo masculino, o beneficio anual que irá ser recebido por cada um deles é maior que as do sexo feminino, que, por sua vez, tem suas chances de falecimento bem menores, pois, a qualidade de vida, a saúde, bem como o lazer, dentre outros aspectos, podem ser vistos como a diminuição do benefício em decorrência das suas necessidades e ações preventivas de rotina.

De fato, na medida em que os benefícios anuais de 55 a 65 anos entre os homens aumentam e nos das mulheres diminuem, por estar levando em consideração a sua expectativa de vida de acordo com os parágrafos anteriores, pode-se afirmar que o trabalho em avaliação está fazendo uma análise de se essas pessoas devem permanecer com as suas contribuições para este tipo de plano de previdência mesmo tendo alternativas que os mesmos não possuem conhecimento suficiente.

4.2 Retorno da Carteira Hipotética de Dividend Yield

Na tabela 4 abaixo, é apresentada a carteira de Dividend Yield do Economática, construída a partir das ações da carteira IDIV do Ibovespa, tendo consigo as oito maiores participações, de 2008 a 2018 respectivamente.

Tabela 4 – Carteira Hipotética de Dividend Yield.

		Dividend Y	rield - 8 maior	es participaçã	ões no IDIV- E	Conomática		
ANO	EGIE3	CMIG4	ITSA4	ITUB3	TRPL4	BRAP4	CCRO3	VIVT4
2008	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2009	3,86	4,81	3,30	1,96	8,31	3,01	3,79	7,95
2010	3,28	10,05	2,62	3,10	9,20	2,35	4,12	10,01
2011	5,47	9,01	4,61	4,81	10,19	5,37	3,72	10,45
2012	6,83	23,84	4,12	3,79	10,73	5,64	3,07	6,92
2013	6,77	9,93	3,71	3,40	4,87	5,43	4,15	10,14
2014	4,82	25,14	3,59	3,01	3,41	12,00	5,15	7,03
2015	3,65	7,55	7,38	6,08	4,96	20,71	4,74	11,50
2016	5,63	10,45	6,99	5,32	2,32	0,75	4,44	4,41
2017	7,65	3,55	4,39	3,98	4,54	4,97	3,94	6,20
2018	10,51	4,65	7,36	7,09	18,17	4,14	5,30	8,91

Fonte: Elaboração própria através dos dados do BM&FBOVESPA e Economática, 2019¹.

Pode-se identificar uma ausência de Dividend Yield (DY) no período de 2008 a 2018, das oito maiores participações escolhidas com base na carteira do IDIV do Ibovespa, que é composta por 33 empresas, apresentando uma média de 8,738264 de retorno, indicando que essas empresas selecionadas, que boa parte delas apresentou valores crescentes e decrescentes no período citado.

Um dos maiores valores de Dividend Yield simulados estão entre 2011, 2012, 2014 e 2018, dos quais a CMIG4, em 2012, tinha 23,84 de DY, aumentando para 25,14 em 2014, e diminuindo para 4,65 o DY; já a TRPL4 obteve um crescimento significativo quanto aos Dividendos simulados, pois, no período de 2011 a 2012, e em 2018, tiveram DY com os valores respectivos de 10,19, 10,73 e 18,17, e a BRAP4 teve um crescimento bem significativo entre 2014 e 2015 (de 12,00 a 20,71), e após esse crescimento, em 2018 voltou a decrescer para 4,14 o seu DY e, por fim, a VIVT4 obteve valores crescentes de 2010, 2011 e 2015, apresentando os valores

¹ Notas: EGIE3 é uma empresa do ramo de energia privada, a CMIG4 é uma concessionária de energia elétrica brasileira, ITSA4 é uma sociedade gestora de participações sociais brasileiras, que controla o Itaú Unibanco, Duratex, Alpargatas, etc. A TRPL4 é uma concessionária de transmissão de energia elétrica brasileira, o BRAP4 administra as participações acionárias que o Bradesco tinha em empresas não financeiras, dentre elas: VCB, Vale, Scopus e Globo Cabo; já a CCRO3 é uma empresa brasileira de concessão de infraestrutura, transportes e serviços, e a VIVT4, conhecida como Telefônica Brasil, é uma empresa do Grupo Telefônica, um dos principais conglomerados de comunicação do mundo.

10,01, 10,45 e crescendo para 11,50, e em 2018, estava com o valor de 8,91, o menor valor dentre esses quatro anos.

A estimativa de cada um dos componentes numéricos da tabela anterior representa que, dado um Dividend Yield, que se trata o Dividendo pago por ação de uma empresa, explicitado na Equação 1 que, quanto maior for o valor, maior está sendo o resultado de cada uma das empresas, ou melhor está sendo sua política de distribuição de lucros, mas pode estar refletindo algum tipo de problema que a empresa possui e a mesma pode não ter uma boa política de pagamento de Dividendos.

Ainda assim, na tabela 5 é apresentado o retorno de Dividend Yield de cada uma das oito maiores participações no Índice IDIV, resultam em uma média de toda a carteira através de planilha, onde cada Dividend Yield foi obtido por simulação pelo Economática.

Tabela 5 – Retorno Anual de cada ativo da Carteira Hipotética

Retorno Anual - 8 maiores participações no IDIV- Economática								
ANO	EGIE3	ESTC3	CMIG4	ITSA4	ITUB3	BRAP4	CCRO3	VIVT4
2008 - 2009	0,16	0,98	-0,01	0,48	0,40	1,01	0,69	-0,05
2009 - 2010	0,27	0,09	-0,15	0,11	0,03	0,12	0,18	-0,03
2010 - 2011	0,09	-0,33	0,25	-0,15	-0,13	-0,27	-0,74	0,23
2011 - 2012	0,11	1,32	-0,32	-0,14	0,15	0,04	0,59	-0,06
2012 - 2013	0,08	-0,51	-0,38	-0,08	-0,06	-0,24	-0,09	-0,09
2013 - 2014	-0,06	0,17	-0,06	0,06	0,10	-0,43	-0,13	0,05
2014 - 2015	-0,01	-0,41	-0,53	-0,27	-0,24	-0,65	-0,19	-0,24
2015 - 2016	0,05	0,13	0,26	0,20	0,22	1,98	0,27	0,23
2016 - 2017	0,01	1,08	-0,11	0,31	0,26	0,93	0,01	0,10
2017 - 2018	-0,07	-0,28	1,02	0,12	-0,20	0,10	-0,31	-0,05
Média por Ativo	0,0639	0,2234	-0,0045	0,0640	0,0531	0,2597	0,0288	0,0107

Fonte: Elaboração própria

Na tabela 6 abaixo, é apresentada o valor do retorno da carteira de Dividend Yield do Economática, que foi obtida pela média de todos os valores contidos em planilha bem como uma média dos retornos obtidos sequencialmente, o valor investido pelas pessoas de ambos os sexos, bem como o valor futuro, resultante da Equação 7.

Tabela 6 – Retorno (DY), Valor Investido e Valor Futuro

Retorno (DY)	8,738264
Valor Investido	R\$ 50.000,00
Valor Futuro	R\$ 486.913,18

Fonte: Elaboração Própria

Observa-se que o valor futuro da tabela acima é bem acima do valor que foi investido pela pessoa física, sendo ela do sexo masculino ou feminino, como também que deve ser levado em consideração o retorno (DY).

No que foi demonstrado na tabela 6, o valor futuro que será recebido por uma pessoa física que investiu R\$ 50.000,00, é de R\$ 486.913,18, pois a média do retorno de Dividend Yield simulado em planilha é de 8,738264; tendo em vista uma análise quanto ao valor futuro citado, pode-se dizer que o retorno da Carteira de Dividendos para quem vai se aposentar, sendo um investidor mais conservador, que esse investimento precisa ter um bom planejamento prévio, conhecimentos em educação financeira e acompanhar o progresso do investimento sendo este em 10 anos como na pesquisa ou em mais anos.

O planejamento citado no parágrafo anterior diz respeito aos critérios que uma pessoa física deve ter para fazer um investimento adequado e viável, do qual a quantia aplicada em qualquer alternativa que ele buscar, é necessário buscar primeiramente as corretoras que trabalham especificamente com o assunto citado. Ainda assim, o investimento em ações é arriscado, pois exige sempre a atenção do investidor para não perder todo o seu capital de uma hora para outra, tendo que traçar o objetivo do qual o investimento foi aplicado, controlar e anotar os gastos mensais, pesquisar e comprar só o que realmente é necessário, ter metas, analisar a evolução das finanças pessoais mensalmente, dentre outros.

4.3 Análise Comparativa

A análise dessa seção tem como função expor os argumentos das seções 4.1 e 4.2, de forma a alcançar o objetivo geral da pesquisa. Diante disso, após a execução das Equações de 1 a 8 por meio de planilhas, foi feita uma verificação da viabilidade dos investimentos em 10 anos, dos quais estão também descritas detalhadamente nas tabelas de 1 a 8 respectivamente.

No entanto, observa-se que os resultados das tabelas 7 e 8 demonstram que os valores atuais dos beneficios futuros demonstram o quanto que uma pessoa física pode receber de beneficio futuro para se aposentar a partir de 10 anos após o aporte total da quantia.

Tabela 7 – Valor Atual dos Benefícios Futuros para o Sexo Masculino.

Sexo Masculino				
Idade de Aposentadoria	VABF			
55 anos	R\$ 67.226,24			
60 anos	R\$ 68.441,09			
65 anos	R\$ 70.423,92			

Fonte: Elaboração Própria

Tabela 8 – Valor Atual dos Benefícios Futuros para o Sexo Feminino.

Sexo Feminin	Sexo Feminino				
Idade de Aposentadoria	VABF				
55 anos	R\$ 65.676,68				
60 anos	R\$ 65.835,02				
65 anos	R\$ 64.806,68				

Fonte: Elaboração Própria

Na tabela 4, é mostrado que o valor futuro que será recebido por uma pessoa física que investiu R\$ 50.000,00, é de R\$ 486.913,18, pois a média do retorno de Dividend Yield simulado em planilha é de 8,738264; tendo em vista uma análise quanto ao valor futuro citado, é possível afirmar que, o retorno da Carteira de Dividendos é uma alternativa viável quanto ao plano de previdência, porém como um complemento para a pessoa que vai se aposentar pelos planos de previdência privada aberta.

Comparando com os valores atuais dos benefícios futuros descritos nas tabelas 7 e 8, para um investidor que não tem um bom conhecimento de educação previdenciária, é correto afirmar que, com um cenário econômico cada vez mais com muitos desafios, com elevação da taxa de juros e com a inflação em processo oscilatório, a pesquisa em avaliação trouxe sobre a importância e necessidade do investimento pessoal em alternativas como o Retorno dos Dividendos e a previdência privada.

Ainda assim, de acordo com o parágrafo anterior, as pessoas físicas de ambos os sexos devem permanecer com seu investimento na previdência privada aberta no modo de tributação VGBL, e ter como um complemento a mais para aumentar o seu patrimônio, o retorno da Carteira de Dividendos, de modo que, esse indivíduo reinvista o dinheiro acumulado aumentando significativamente a sua liquidez.

Entretanto, considerando uma análise comparativa entre as tabelas 2, 3 e 6, pode-se dizer que mesmo com pouco conhecimento em outros tipos de investimentos de longo prazo, faz-se uma suposição de fazer uma divisão entre todos os benefícios anuais das tabelas 2 e 3, proporcionalmente para a idade de 55 anos para ambos os sexos, seria mais significativo que investissem na carteira de Dividendos hipoteticamente. Entretanto, no que diz respeito às idades de 60 e 65 anos para o sexo masculino, é mais vantajoso permanecer com a previdência privada, e para o sexo feminino, mesmo com a expectativa de vida maior, devem migrar para investir na carteira de Dividendos.

5 CONSIDERAÇÕES FINAIS

O presente estudo buscou verificar a importância da viabilidade de uma pessoa física investir em uma carteira de Dividendos, que esta, simulada em longo prazo, tende a ser uma complementação para a aposentadoria que foi simulada e descrita nas seções anteriores.

Além disso, o estudo analisou os investimentos em previdência privada aberta na tributação no modo VGBL e em Dividendos, que é influenciada por vários aspectos, como o conhecimento em educação previdenciária, investimento agressivo, o consumo dos indivíduos e a aposentadoria de cada um deles, sendo estes convergentes com os estudos de Arnôr e Rodrigues (2018) como também o de Schneider (2009).

Os resultados obtidos na presente pesquisa promove às pessoas contribuintes da previdência, conhecimento em previdência e finanças, associados a melhores recomendações de estudiosos da literatura e, além de servir de direcionamento para tomada de decisões deles quanto aos tipos de investimentos citados na seção 4, bem como evidenciar qual dos citados no trabalho pode trazer um maior benefício a ser recebido quando se aposentar.

Portanto, o presente trabalho apresentou a totalidade dos resultados esperados, mas, por mostrar limitações quanto aos estudos anteriores, é válido para futuras pesquisas, para que possam analisar o ganho de conhecimento de que uma pessoa física se aposentar somente com os Dividendos ou pela previdência privada desconsiderando a previdência social, que está passando por diversas mudanças estruturais quanto às faixas etárias, também tem como outras alternativas investir em Fundos de Investimentos, e em Títulos Públicos Federais do Tesouro Nacional (Tesouro Direto).

REFERÊNCIAS

ANDRADE, Elisson de. **Resultados e simulações com Previdência Privada I (VGBL)**. 2011. Disponível em: https://profelisson.com.br/2011/10/21/resultados-e-simulacoes-com-previdencia-privada-i-vgbl/. Acesso em: 17 out. 2018.

ARNÔR, Beatriz Maria de Souza; RODRIGUES, Fernanda Gercilene de Sousa. **Processo de Conversão do Seguro de Vida para Previdência Privada**. 2018. 74 f. TCC (Graduação) - Curso de Ciências Contábeis, Universidade Federal Rural da Amazônia, Capanema, 2018.

BRITO, Leonardo Mesquita de. **Análise Dinâmica de Estilo de Fundos Brasileiros de Previdência Privada**. 2016. 115 f. Dissertação (Mestrado) - Curso de Instituto Coppead de AdministraÇÃo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016. Disponível em: http://www.anbima.com.br/data/files/F0/70/3F/16/AF1E7510E7FCF875262C16A8/Dissertacao-Leonardo-Brito. Acesso em: 19 set. 2018.

CASTELÃO, Simone Ribeiro. A Eficácia das Ações de Educação Previdenciária como Ferramenta para Melhorar o Entendimento do Produto Previdência Privada. 2012. 114 f. Dissertação (Mestrado) - Curso de Mestrado Profissional Executivo em Gestão Empresarial, Escola Brasileira de Administração Pública, Fundação Getúlio Vargas, Rio de Janeiro, 2012. Disponível em: http://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/10149/Disserta%C3%A7%C3%A3 o%20Educacao%20Previdenci%C3%A1ria_Simone%20Castel%C3%A3o.pdf?sequence=1&isAllowed=y>. Acesso em: 19 fev. 2019.

CNSEG (Rio de Janeiro). Mercado segurador ganha 1ª tábua atuarial genuinamente brasileira. Disponível em: http://cnseg.org.br/cnseg/servicos-apoio/noticias/mercado-segurador-ganha-1-tabua-atuarial-genuinamente-brasileira.html>. Acesso em: 17 out. 2018.

DAMODARAN, Aswath. Avaliação de investimentos: ferramentas e técnicas para a determinação do valor de qualquer ativo. 2. ed. Rio de Janeiro: Qualitymark, 2014. 1036 p.

DEBIASI, Cristiano Minuzzi. **O Mercado de Previdência Privada No Brasil: Análise Das Melhores Alternativas De Investimento Previdenciário.** Revista de Ciências da Administração, Florianópolis, p.1-22, dez. 2004. Anual. Disponível em: https://periodicos.ufsc.br/index.php/adm/article/view/4732/4023>. Acesso em: 25 ago. 2018.

DIVIDENDO Por Ação: Uma Métrica Relevante Para O Acionista. Uma Métrica Relevante Para O Acionista. Escrito por Thiago Reis. Disponível em: https://www.sunoresearch.com.br/artigos/Dividendo-por-acao/>. Acesso em: 26 jul. 2018.

Fábio Gallo (Ed.). Custos do PGBL e do VGBL são taxa de administração e de carregamento. 2012. Disponível em: https://economia.estadao.com.br/noticias/geral,custos-do-pgbl-e-do-vgbl-sao-taxa-de-administracao-e-de-carregamento-imp-,828886>. Acesso em: 17 out. 2018.

FERNANDES, Christian. **Destrinchando a Previdência Privada – Parte 5.2 – IR Progressivo ou Regressivo?** Disponível em: http://pouparinvestirganhar.com.br/destrinchando-a-previdencia-privada-parte-5-2-ir-progressivo-ou-regressivo/. Acesso em: 04 set. 2018.

GALLO, Fábio (Ed.). Custos do PGBL e do VGBL são taxa de administração e de carregamento. 2012. Disponível em: https://economia.estadao.com.br/noticias/geral,custos-do-pgbl-e-do-vgbl-sao-taxa-de-administracao-e-de-carregamento-imp-,828886>. Acesso em: 17 out. 2018.

GALVÃO, Kécia da Silveira. **Política de Distribuição de Dividendos: Por Que as Empresas Brasileiras Pagam Payout Incremental?** 2015. 112 f. Tese (Doutorado) - Curso de Programa de Pós-graduação em Administração, Ciências Administrativas, Universidade Federal de Pernambuco, Recife, 2015. Disponível em: https://repositorio.ufpe.br/bitstream/123456789/15601/1/Tese%20K%C3%A9cia_ok.pdf. Acesso em: 14 set. 2018.

JESUS, Marcelo de. Falso Positivo na Performance dos Fundos de Investimento Com Gestão Ativa no Brasil: Mensurando Sorte dos Gestores nos Alfas Estimados. 2011. 132 f. Tese (Doutorado) - Curso de Programa de Pós Graduação em Administração de Empresas, Centro de Ciências Sociais Aplicadas, Universidade Presbiteriana Mackenzie, São Paulo, 2011. Disponível em: http://tede.mackenzie.br/jspui/bitstream/tede/770/1/Marcelo%20de%20Jesus.pdf>. Acesso em: 20 set. 2018.

JUVERCINA SOBRINHO, Érica. Potenciais Efeitos dos Dividendos na Composição e na Performance de Fundos de Ações no Brasil. 2016. 87 f. Dissertação (Mestrado) - Curso de Ciências Contábeis, Universidade de Uberlândia, Uberlândia, 2016. Disponível em: https://repositorio.ufu.br/bitstream/123456789/18028/1/PotenciaisEfeitosDividendos.pdf. Acesso em: 14 set. 2018.

KATAOKA, Bruno. Como Ganhar Dinheiro com Dividendos e Multiplicar Seu Patrimônio. 2017. Disponível em: https://investidorlucrativo.com.br/como-ganhar-dinheiro-com-Dividendos/>. Acesso em: 10 ago. 2018.

LEI das Sociedades Anonimas de 1976 - Lei 6404/76 | **Lei no 6.404, de 15 de dezembro de 1976. Publicado por Presidência da Republica e extraído pelo Jusbrasil.** Disponível em: https://presrepublica.jusbrasil.com.br/legislacao/105530/lei-das-sociedades-anonimas-de-1976-lei-6404-76#art-193>. Acesso em: 15 jul. 2018.

LOPES, Elaine Cristina. Construção de Conhecimento em Governança Corporativa: Estudo Sobre a Criação de Valor para Tomada de Decisão. 2014. 228 f. Tese (Doutorado) - Curso de Programa de Pós-graduação em Ciência da Informação, Universidade Estadual Paulista "júlio de Mesquita Filho", Marília, 2014. Disponível em: https://www.marilia.unesp.br/Home/Pos-Graduacao/CienciadaInformacao/Dissertacoes/lopes ec do mar.pdf. Acesso em: 14 set. 2018.

LOSS, Lenita; SARLO NETO, Alfredo. **O inter-relacionamento entre políticas de Dividendos e de investimentos: estudo aplicado às companhias Brasileiras negociadas na Bovespa**. Revista Contabilidade & Finanças, [s.l.], v. 17, n. 40, p.52-66, abr. 2006. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1519-70772006000100005. Disponível em: http://www.scielo.br/pdf/rcf/v17n40/v17n40a05.pdf>. Acesso em: 19 out. 2018.

LUCRO e Dividendos distribuídos aos acionistas com base na Lei nº 6.404/76 e possíveis consequências da modificação da Lei nº 9.249/95. 2015. Escrito por Francisco Costa Carneiro. Disponível em: http://www.contabeis.com.br/artigos/2500/lucro-e-Dividendos-distribuidos-aos-acionistas-com-base-na-lei-no-640476-e-possiveis-consequencias-da-modificacao-da-lei-no-924995/>. Acesso em: 15 ago. 2018.

MIOTTO, Alissiano Francisco. **A Política de Dividendos e a Maximização da Riqueza dos Acionistas.** 2003. 79 f. TCC (Graduação) - Curso de Ciências Contábeis, Centro Sócioeconômico, Universidade Federal de Santa Catarina, Florianópolis, 2003. Disponível em: https://repositorio.ufsc.br/handle/123456789/123893. Acesso em: 20 set. 2018.

MOTA, Daniel Camarotto; EID JUNIOR, Willian. **DIVIDENDOS, JUROS SOBRE CAPITAL PRÓPRIO E RECOMPRA DE AÇÕES: um estudo empírico sobre a política de distribuição no Brasil.** In: XXXI ENCONTRO DA ANPAD, 31., 2007, Rio de Janeiro. Periódicos. Rio de Janeiro: Scielo, 2007. v. 16, p. 1 - 16. Disponível em: http://www.anpad.org.br/admin/pdf/FIN-B609.pdf>. Acesso em: 14 ago. 2018.

PERGUNTAS MAIS FREQUENTES SOBRE PLANOS POR SOBREVIVÊNCIA - PGBL E VGBL. Disponível em: http://www.susep.gov.br/setores-susep/seger/coate/perguntas-mais-frequentes-sobre-planos-por-sobrevivencia-pgbl-e-vgbl>. Acesso em: 04 set. 2018.

POR dentro do VGBL: plano da previdência privada. Disponível em: https://www.bidu.com.br/previdencia-privada/o-que-e-vgbl/>. Acesso em: 04 set. 2018.

QUAL É A DIFERENÇA ENTRE PREVIDÊNCIA ABERTA E FECHADA? 2016. Postado por José Roberto Marques. Disponível em: http://www.ibccoaching.com.br/portal/qual-e-diferenca-entre-previdencia-aberta-e-fechada/>. Acesso em: 30 ago. 2018.

QUAL é o melhor investimento para aposentadoria?: Veja simulações. Veja simulações. 2018. Escrito por Sílvio Guedes Crespo. Disponível em: https://economia.estadao.com.br/blogs/silvio-crespo/qual-e-o-melhor-investimento-para-aposentadoria->. Acesso em: 20 jul. 2018.

SCHNEIDER, Claudio Samuel Santos. **Avaliação do Desempenho de Carteira de Ações Baseadas em Dividendos para Composição de Poupança para Aposentadoria.** 2009. 86 f. TCC (Graduação) - Curso de Administração, Ciências Administrativas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009. Disponível em: https://www.lume.ufrgs.br/bitstream/handle/10183/18148/000712696.pdf?sequence=1>. Acesso em: 30 set. 2018.

SCHOSSLER, Camila Mirele; CONTO, Samuel Martim de. **Previdência Privada Aberta: Um Estudo Sobre o Produto no Mercado de Investimentos.** Revista Univates, Lajeado, v. 7, n. 442, p.1-14, jan. 2015. Disponível em: http://www.univates.br/revistas/index.php/destaques/article/viewFile/450/442>. Acesso em: 14 set. 2018.

TOMAZ, Nayana Cristina Brasileiro. **Relação entre a distribuição de Dividendos e o preço da ação das empresas listadas na B3.** 2017. 45 f. TCC (Graduação) - Curso de Ciências Contábeis, Centro Ciências Sociais Aplicadas, Universidade Federal da Paraíba, João Pessoa, 2017. Disponível em: https://repositorio.ufpb.br/jspui/handle/123456789/1902>. Acesso em: 16 ago. 2018.

VALOR Investe: A opinião independe. A opinião independe. 2011. Postado por André Rocha. Disponível em: https://www.valor.com.br/valor-investe/o-estrategista/1097562/mitos-e-verdades-sobre-viver-de-Dividendos>. Acesso em: 31 ago. 2018.

ANEXO A

	Sobrevivência Masculina	Sobrevivência Feminina	Mortalidade Masculina	Mortalidade Feminina
	BR-EMSsb-v.2010-m	BR-EMSsbv.2010-f	BR-EMSmtv.2010-m	BR-EMSmt v.2010-f
Idade	qx	qx	qx	qx
0	0,00200	0,00038	0,00274	0,00128
1	0,00069	0,00038	0,00095	0,00046
2	0,00035	0,00020	0,00048	0,00025
3	0,00022	0,00013	0,00030	0,00016
4	0,00016	0,00010	0,00022	0,00012
5	0,00013	0,00008	0,00018	0,00010
6	0,00012	0,00007	0,00016	0,00009
7	0,00011	0,00007	0,00015	0,00009
8	0,00011	0,00008	0,00015	0,00009
9	0,00012	0,00009	0,00016	0,00011
10	0,00013	0,00012	0,00018	0,00014
11	0,00015	0,00015	0,00021	0,00018
12	0,00019	0,00018	0,00026	0,00022
13	0,00024	0,00022	0,00033	0,00026
14	0,00031	0,00025	0,00042	0,00030
15	0,00039	0,00027	0,00053	0,00033
16	0,00048	0,00029	0,00065	0,00035
17	0,00057	0,00030	0,00078	0,00037
18	0,00066	0,00031	0,00090	0,00037
19	0,00074	0,00030	0,00101	0,00037
20	0,00080	0,00030	0,00110	0,00037
21	0,00085	0,00030	0,00117	0,00036
22	0,00089	0,00029	0,00122	0,00036
23	0,00092	0,00029	0,00125	0,00035
24	0,00093	0,00029	0,00127	0,00035
25	0,00093	0,00029	0,00127	0,00035
26	0,00093	0,00029	0,00127	0,00036

27	0,00092	0,00030	0,00126	0,00037
28	0,00092	0,00032	0,00126	0,00037
29	0,00092	0,00032	0,00125	0,00039
30	0,00091	0,00035	0,00125	0,00041
	, i	·	-	
31	0,00093	0,00037	0,00127	0,00047
32	0,00094	0,00040	0,00129	0,00050
33	0,00099	0,00042	0,00135	0,00054
34	0,00103	0,00045	0,00142	0,00057
35	0,00109	0,00047	0,00149	0,00062
36	0,00115	0,00051	0,00157	0,00066
37	0,00121	0,00054	0,00166	0,00071
38	0,00128	0,00058	0,00176	0,00076
39	0,00136	0,00062	0,00186	0,00082
40	0,00144	0,00066	0,00198	0,00088
41	0,00153	0,00071	0,00211	0,00095
42	0,00164	0,00077	0,00225	0,00103
43	0,00175	0,00083	0,00240	0,00111
44	0,00187	0,00089	0,00256	0,00120
45	0,00200	0,00096	0,00275	0,00130
46	0,00215	0,00104	0,00295	0,00140
47	0,00231	0,00112	0,00317	0,00152
48	0,00249	0,00121	0,00341	0,00164
49	0,00268	0,00131	0,00367	0,00178
50	0,00290	0,00142	0,00396	0,00193
51	0,00313	0,00155	0,00427	0,00209
52	0,00339	0,00169	0,00462	0,00228
53	0,00367	0,00185	0,00499	0,00248
54	0,00398	0,00203	0,00541	0,00270
55	0,00431	0,00223	0,00586	0,00294
56	0,00468	0,00245	0,00635	0,00321
57	0,00509	0,00271	0,00690	0,00351
58	0,00554	0,00299	0,00749	0,00384
59	0,00603	0,00330	0,00814	0,00420
60	0,00656	0,00365	0,00886	0,00459
61	0,00715	0,00403	0,00964	0,00501
62	0,00780	0,00445	0,01049	0,00548
63	0,00851	0,00491	0,01143	0,00599

64	0,00929	0,00541	0,01246	0,00654
65	0,01014	0,00593	0,01358	0,00714
66	0,01107	0,00648	0,01481	0,00778
67	0,01210	0,00710	0,01616	0,00850
68	0,01323	0,00775	0,01763	0,00927
69	0,01446	0,00843	0,01925	0,01009
70	0,01581	0,00919	0,02102	0,01100
71	0,01730	0,01006	0,02295	0,01202
72	0,01893	0,01102	0,02508	0,01312
73	0,02072	0,01204	0,02740	0,01430
74	0,02268	0,01313	0,02994	0,01558
75	0,02483	0,01433	0,03273	0,01699
76	0,02719	0,01566	0,03578	0,01856
77	0,02977	0,01714	0,03912	0,02030
78	0,03261	0,01876	0,04278	0,02221
79	0,03573	0,02055	0,04679	0,02431
80	0,03914	0,02264	0,05118	0,02674
81	0,04289	0,02516	0,05598	0,02962
82	0,04700	0,02817	0,06125	0,03307
83	0,05150	0,03176	0,06701	0,03711
84	0,05645	0,03577	0,07332	0,04185
85	0,06187	0,04042	0,08024	0,04749
86	0,06782	0,04582	0,08781	0,05413
87	0,07434	0,05219	0,09609	0,06170
88	0,08150	0,05928	0,10517	0,07040
89	0,08935	0,06734	0,11511	0,08096
90	0,09796	0,07651	0,12600	0,09310
91	0,10741	0,08727	0,13792	0,10647
92	0,11777	0,09906	0,15098	0,12110
93	0,12913	0,11227	0,16528	0,13857
94	0,14160	0,12800	0,18093	0,15795
95	0,15527	0,14641	0,19808	0,17998
96	0,17027	0,16835	0,21686	0,20594
97	0,18672	0,18672	0,23742	0,23015
98	0,20477	0,20477	0,25994	0,25194
99	0,22457	0,22457	0,28460	0,27912
100	0,24628	0,24628	0,31161	0,31072

101	0,27010	0,27010	0,34118	0,34118
102	0,29622	0,29622	0,37357	0,37357
103	0,32488	0,32488	0,40904	0,40904
104	0,35632	0,35632	0,44788	0,44788
105	0,39080	0,39080	0,49042	0,49042
106	0,42862	0,42862	0,53700	0,53700
107	0,47011	0,47011	0,58801	0,58801
108	0,51562	0,51562	0,64387	0,64387
109	0,56553	0,56553	0,70505	0,70505
110	0,62029	0,62029	0,77204	0,77204
111	0,68035	0,68035	0,84540	0,84540
112	0,74623	0,74623	0,92575	0,92575
113	0,81849	0,81849	1,00000	1,00000
114	0,89776	0,89776		
115	0,98471	0,98471		
116	1,00000	1,00000		

Mortalidade Masculina

Idade	qx	px	l _x	d _x	D _x	N _x	ä _x
0	0,00274	0,99726	100000	274	100000,0000	3041299,3844	30,412994
1	0,00095	0,99905	99726	94,7397	96821,3592	2941299,3844	30,378621
2	0,00048	0,99952	99631,2603	47,82300494	93912,0184	2844478,0252	30,288754
3	0,0003	0,9997	99583,4373	29,87503119	91132,9521	2750566,0068	30,181904
4	0,00022	0,99978	99553,56226	21,9017837	88452,0506	2659433,0548	30,066381
5	0,00018	0,99982	99531,66048	17,91569889	85856,8847	2570981,0041	29,944960
6	0,00016	0,99984	99513,74478	15,92219917	83341,1946	2485124,1195	29,818676
7	0,00015	0,99985	99497,82258	14,92467339	80900,8349	2401782,9249	29,687987
8	0,00015	0,99985	99482,89791	14,92243469	78532,7183	2320882,0900	29,553059
9	0,00016	0,99984	99467,97547	15,91487608	76233,9207	2242349,3717	29,414063
10	0,00018	0,99982	99452,0606	17,90137091	74001,6731	2166115,4510	29,271169
11	0,00021	0,99979	99434,15923	20,88117344	71833,3522	2092113,7778	29,124546
12	0,00026	0,99974	99413,27805	25,84745229	69726,4731	2020280,4256	28,974367
13	0,00033	0,99967	99387,4306	32,7978521	67678,0040	1950553,9525	28,821092
14	0,00042	0,99958	99354,63275	41,72894575	65685,1168	1882875,9485	28,665184
15	0,00053	0,99947	99312,9038	52,63583902	63745,1738	1817190,8317	28,507112
16	0,00065	0,99935	99260,26796	64,51917418	61855,7174	1753445,6579	28,347350
17	0,00078	0,99922	99195,74879	77,37268406	60015,0594	1691589,9405	28,186091
18	0,0009	0,9991	99118,37611	89,2065385	58221,5996	1631574,8811	28,023532
19	0,00101	0,99899	99029,16957	100,0194613	56474,9517	1573353,2815	27,859312
20	0,0011	0,9989	98929,15011	108,8220651	54774,6718	1516878,3298	27,693061
21	0,00117	0,99883	98820,32804	115,6197838	53120,7958	1462103,6580	27,524129
22	0,00122	0,99878	98704,70826	120,4197441	51513,2470	1408982,8622	27,351855
23	0,00125	0,99875	98584,28851	123,2303606	49951,8455	1357469,6152	27,175565
24	0,00127	0,99873	98461,05815	125,0455439	48436,3162	1307517,7697	26,994575
25	0,00127	0,99873	98336,01261	124,886736	46965,8273	1259081,4535	26,808459
26	0,00127	0,99873	98211,12587	124,7281299	45539,9812	1212115,6262	26,616516
27	0,00126	0,99874	98086,39774	123,5888612	44157,4228	1166575,6449	26,418563
28	0,00126	0,99874	97962,80888	123,4331392	42817,2664	1122418,2222	26,214149
29	0,00125	0,99875	97839,37574	122,2992197	41517,7832	1079600,9557	26,003338
30	0,00126	0,99874	97717,07652	123,1235164	40258,1417	1038083,1725	25,785670
31	0,00127	0,99873	97593,95301	123,9443203	39036,3266	997825,0308	25,561448
32	0,00129	0,99871	97470,00869	125,7363112	37851,2141	958788,7042	25,330461
33	0,00135	0,99865	97344,27238	131,4147677	36701,3457	920937,4901	25,092745
34	0,00142	0,99858	97212,85761	138,0422578	35584,2707	884236,1444	24,849073
35	0,00149	0,99851	97074,81535	144,6414749	34498,7777	848651,8737	24,599477
36	0,00157	0,99843	96930,17387	152,180373	33444,0530	814153,0960	24,343733
37	0,00166	0,99834	96777,9935	160,6514692	32418,9765	780709,0430	24,081854
38	0,00176	0,99824	96617,34203	170,046522	31422,4864	748290,0665	23,813840

39	0,00186	0,99814	96447,29551	179,3919696	30453,5756	716867,5801	23,539685
40	0,00198	0,99802	96267,90354	190,610449	29511,5844	686414,0046	23,259138
41	0,00211	0,99789	96077,29309	202,7230884	28595,2927	656902,4202	22,972397
42	0,00225	0,99775	95874,57	215,7177825	27703,8414	628307,1275	22,679423
43	0,0024	0,9976	95658,85222	229,5812453	26836,4153	600603,2862	22,380161
44	0,00256	0,99744	95429,27098	244,2989337	25992,2406	573766,8709	22,074544
45	0,00275	0,99725	95184,97204	261,7586731	25170,5830	547774,6303	21,762493
46	0,00295	0,99705	94923,21337	280,0234794	24370,2562	522604,0473	21,444339
47	0,00317	0,99683	94643,18989	300,0189119	23590,6446	498233,7911	21,119974
48	0,00341	0,99659	94343,17098	321,710213	22830,9343	474643,1465	20,789475
49	0,00367	0,99633	94021,46076	345,058761	22090,3697	451812,2122	20,452904
50	0,00396	0,99604	93676,402	370,9585519	21368,2505	429721,8425	20,110296
51	0,00427	0,99573	93305,44345	398,4142435	20663,7206	408353,5920	19,761862
52	0,00462	0,99538	92907,02921	429,2304749	19976,2005	387689,8714	19,407588
53	0,00499	0,99501	92477,79873	461,4642157	19304,7674	367713,6709	19,047817
54	0,00541	0,99459	92016,33452	497,8083697	18648,9676	348408,9034	18,682477
55	0,00586	0,99414	91518,52615	536,2985632	18007,8415	329759,9358	18,312019
56	0,00635	0,99365	90982,22758	577,7371452	17380,8888	311752,0943	17,936487
57	0,0069	0,9931	90404,49044	623,790984	16767,4953	294371,2055	17,556063
58	0,00749	0,99251	89780,69946	672,4574389	16166,7958	277603,7102	17,171226
59	0,00814	0,99186	89108,24202	725,34109	15578,3558	261436,9144	16,782061
60	0,00886	0,99114	88382,90093	783,0725022	15001,5029	245858,5586	16,388929
61	0,00964	0,99036	87599,82842	844,462346	14435,5238	230857,0557	15,992288
62	0,01049	0,98951	86755,36608	910,0637902	13879,9664	216421,5319	15,592367
63	0,01143	0,98857	85845,30229	981,2118052	13334,3355	202541,5655	15,189476
64	0,01246	0,98754	84864,09048	1057,406567	12797,9845	189207,2300	14,784143
65	0,01358	0,98642	83806,68392	1138,094768	12270,4093	176409,2455	14,376802
66	0,01481	0,98519	82668,58915	1224,321805	11751,2400	164138,8362	13,967789
67	0,01616	0,98384	81444,26734	1316,13936	11240,0040	152387,5962	13,557610
68	0,01763	0,98237	80128,12798	1412,658896	10736,2772	141147,5922	13,146791
69	0,01925	0,98075	78715,46909	1515,27278	10239,8026	130411,3150	12,735726
70	0,02102	0,97898	77200,19631	1622,748126	9750,1809	120171,5124	12,325055
71	0,02295	0,97705	75577,44818	1734,502436	9267,2157	110421,3315	11,915265
72	0,02508	0,97492	73842,94574	1851,981079	8790,8088	101154,1158	11,506804
73	0,0274	0,9726	71990,96466	1972,552432	8320,7139	92363,3070	11,100407
74	0,02994	0,97006	70018,41223	2096,351262	7857,0159	84042,5931	10,696503
75	0,03273	0,96727	67922,06097	2223,089056	7399,7833	76185,5772	10,295650
76	0,03578	0,96422	65698,97192	2350,709215	6949,1150	68785,7939	9,898497
77	0,03912	0,96088	63348,2627	2478,184037	6505,3161	61836,6789	9,505561
78	0,04278	0,95722	60870,07866	2604,021965	6068,7652	55331,3628	9,117400
79	0,04679	0,95321	58266,0567	2726,268793	5639,9451	49262,5976	8,734588
80	0,05118	0,94882	55539,7879	2842,526345	5219,4680	43622,6525	8,357682
81	0,05598	0,94402	52697,26156	2949,992702	4808,0929	38403,1845	7,987197
82	0,06125	0,93875	49747,26886	3047,020218	4406,7338	33595,0916	7,623581
83	0,06701	0,93299	46700,24864	3129,383661	4016,3314	29188,3578	7,267418
84	0,07332	0,92668	43570,86498	3194,61582	3638,0554	25172,0264	6,919088
85	0,08024	0,91976	40376,24916	3239,790232	3273,1196	21533,9710	6,579036
	0,00021	0,21270	.02.0,21010	1 220,770202	02.0,1170		0,0,000

87 0,09609 0,90391 33875,50647 3255,097416 2588,4945 15338,0510 5,923 88 0,10517 0,89483 30620,40905 3220,34842 2271,6175 12749,5565 5,613 89 0,11511 0,88489 27400,06063 3154,020979 1973,5063 10477,9390 5,309 90 0,126 0,874 24246,03965 3055,000996 1695,4719 8504,4326 5,013 91 0,13792 0,86208 21191,03866 2922,668051 1438,6820 6808,9608 4,733 92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 16604,2406 2100,48797 639,6512 2369,2094 3,703 96								
88 0,10517 0,89483 30620,40905 3220,34842 2271,6175 12749,5565 5,612 89 0,11511 0,88489 27400,06063 3154,020979 1973,5063 10477,9390 5,309 90 0,126 0,874 24246,03965 3055,000996 1695,4719 8504,4326 5,012 91 0,13792 0,86208 21191,03866 2922,668051 1438,6820 6808,9608 4,732 92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,700 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,472 97	86	0,08781	0,91219	37136,45893	3260,952458	2922,8004	18260,8515	6,247724
89 0,11511 0,88489 27400,06063 3154,020979 1973,5063 10477,9390 5,300 90 0,126 0,874 24246,03965 3055,000996 1695,4719 8504,4326 5,013 91 0,13792 0,86208 21191,03866 2922,668051 1438,6820 6808,9608 4,733 92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,700 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,472 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,252 98 <t< td=""><td>87</td><td>0,09609</td><td>0,90391</td><td>33875,50647</td><td>3255,097416</td><td>2588,4945</td><td>15338,0510</td><td>5,925472</td></t<>	87	0,09609	0,90391	33875,50647	3255,097416	2588,4945	15338,0510	5,925472
90 0,126 0,874 24246,03965 3055,000996 1695,4719 8504,4326 5,013 91 0,13792 0,86208 21191,03866 2922,668051 1438,6820 6808,9608 4,733 92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,703 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,473 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,253 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 100	88	0,10517	0,89483	30620,40905	3220,34842	2271,6175	12749,5565	5,612545
91 0,13792 0,86208 21191,03866 2922,668051 1438,6820 6808,9608 4,732 92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,703 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,473 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,253 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100	89	0,11511	0,88489	27400,06063	3154,020979	1973,5063	10477,9390	5,309301
92 0,15098 0,84902 18268,3706 2758,158594 1204,1349 5370,2788 4,459 93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,199 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,949 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,700 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,470 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,250 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0	90	0,126	0,874	24246,03965	3055,000996	1695,4719	8504,4326	5,015968
93 0,16528 0,83472 15510,21201 2563,527841 992,5579 4166,1439 4,197 94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,943 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,703 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,473 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,253 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,043 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,843 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,	91	0,13792	0,86208	21191,03866	2922,668051	1438,6820	6808,9608	4,732777
94 0,18093 0,81907 12946,68417 2342,443567 804,3766 3173,5860 3,94: 95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,70: 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,47: 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,25: 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,04: 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,84: 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,65: 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,47: 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,30: 103 0,4	92	0,15098	0,84902	18268,3706	2758,158594	1204,1349	5370,2788	4,459865
95 0,19808 0,80192 10604,2406 2100,487979 639,6512 2369,2094 3,702 96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,472 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,252 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,447	93	0,16528	0,83472	15510,21201	2563,527841	992,5579	4166,1439	4,197381
96 0,21686 0,78314 8503,752624 1844,123794 498,0088 1729,5582 3,472 97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,252 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,4904	94	0,18093	0,81907	12946,68417	2342,443567	804,3766	3173,5860	3,945398
97 0,23742 0,76258 6659,62883 1581,129077 378,6511 1231,5494 3,252 98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,842 106 0,537 <td>95</td> <td>0,19808</td> <td>0,80192</td> <td>10604,2406</td> <td>2100,487979</td> <td>639,6512</td> <td>2369,2094</td> <td>3,703908</td>	95	0,19808	0,80192	10604,2406	2100,487979	639,6512	2369,2094	3,703908
98 0,25994 0,74006 5078,499753 1320,105226 280,3415 852,8983 3,042 99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,842 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,712 107 0,58801	96	0,21686	0,78314	8503,752624	1844,123794	498,0088	1729,5582	3,472947
99 0,2846 0,7154 3758,394527 1069,639082 201,4267 572,5568 2,842 100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,842 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,712 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,583 108 0,64387	97	0,23742	0,76258	6659,62883	1581,129077	378,6511	1231,5494	3,252465
100 0,31161 0,68839 2688,755445 837,8430842 139,9036 371,1300 2,652 101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,84* 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,715 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,588 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,476 109 0,70505	98	0,25994	0,74006	5078,499753	1320,105226	280,3415	852,8983	3,042355
101 0,34118 0,65882 1850,912361 631,4942792 93,5031 231,2265 2,472 102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,842 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,713 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,588 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	99	0,2846	0,7154	3758,394527	1069,639082	201,4267	572,5568	2,842506
102 0,37357 0,62643 1219,418081 455,5380127 59,8075 137,7233 2,302 103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,842 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,712 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,583 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	100	0,31161	0,68839	2688,755445	837,8430842	139,9036	371,1300	2,652756
103 0,40904 0,59096 763,8800688 312,4575033 36,3740 77,9158 2,142 104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,990 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,84 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,713 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,583 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	101	0,34118	0,65882	1850,912361	631,4942792	93,5031	231,2265	2,472927
104 0,44788 0,55212 451,4225654 202,1831386 20,8695 41,5418 1,996 105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,84° 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,71° 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,588 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,476 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	102	0,37357	0,62643	1219,418081	455,5380127	59,8075	137,7233	2,302776
105 0,49042 0,50958 249,2394268 122,2319997 11,1869 20,6723 1,84° 106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,71° 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,58° 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,47° 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,35°	103	0,40904	0,59096	763,8800688	312,4575033	36,3740	77,9158	2,142075
106 0,537 0,463 127,0074271 68,20298837 5,5346 9,4855 1,713 107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,583 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	104	0,44788	0,55212	451,4225654	202,1831386	20,8695	41,5418	1,990552
107 0,58801 0,41199 58,80443876 34,57759804 2,4879 3,9509 1,588 108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	105	0,49042	0,50958	249,2394268	122,2319997	11,1869	20,6723	1,847911
108 0,64387 0,35613 24,22684072 15,59893594 0,9951 1,4630 1,470 109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	106	0,537	0,463	127,0074271	68,20298837	5,5346	9,4855	1,713860
109 0,70505 0,29495 8,627904787 6,08310427 0,3441 0,4679 1,359	107	0,58801	0,41199	58,80443876	34,57759804	2,4879	3,9509	1,588069
	108	0,64387	0,35613	24,22684072	15,59893594	0,9951	1,4630	1,470207
	109	0,70505	0,29495	8,627904787	6,08310427	0,3441	0,4679	1,359935
110 0,77204 0,22796 2,544800517 1,964687791 0,0985 0,1238 1,250	110	0,77204	0,22796	2,544800517	1,964687791	0,0985	0,1238	1,256935
111 0,8454 0,1546 0,580112726 0,490427298 0,0218 0,0253 1,160	111	0,8454	0,1546	0,580112726	0,490427298	0,0218	0,0253	1,160917
112 0,92575 0,07425 0,089685427 0,083026284 0,0033 0,0035 1,072	112	0,92575	0,07425	0,089685427	0,083026284	0,0033	0,0035	1,072087
113 1 0 0,006659143 0,006659143 0,0002 0,0002 1,000	113	1	0	0,006659143	0,006659143	0,0002	0,0002	1,000000

Idade	qx	px	lx	dx	Dx	Nx	äx
0	0,00128	0,99872	100.000	128,0000	100000,0000	3310178,4227	33,1017842
1	0,00046	0,99954	99.872	45,9411	96963,1068	3210178,4227	33,107215
2	0,00025	0,99975	99.871	24,9678	94137,9965	3113215,3159	33,0707624
3	0,00016	0,99984	99.870	15,9792	91395,1982	3019077,3194	33,033216
4	0,00012	0,99988	99.869	11,9843	88732,3138	2927682,1212	32,9945428
5	0,0001	0,9999	99.868	9,9868	86147,0149	2838949,8075	32,954709
6	0,00009	0,99991	99.867	8,9880	83637,0412	2752802,7925	32,9136798
7	0,00009	0,99991	99.866	8,9879	81200,1978	2669165,7514	32,8714193
8	0,00009	0,99991	99.865	8,9879	78834,3542	2587965,5535	32,8278906
9	0,00011	0,99989	99.864	10,9850	76537,4416	2509131,1993	32,7830555
10	0,00014	0,99986	99.863	13,9808	74307,4517	2432593,7577	32,736875
11	0,00018	0,99982	99.862	17,9752	72142,4347	2358286,3060	32,6893085
12	0,00022	0,99978	99.861	21,9694	70040,4975	2286143,8713	32,6403146
13	0,00026	0,99974	99.860	25,9636	67999,8022	2216103,3739	32,5898503
14	0,0003	0,9997	99.859	29,9577	66018,5645	2148103,5717	32,5378716
15	0,00033	0,99967	99.858	32,9531	64095,0520	2082085,0072	32,4843329
16	0,00035	0,99965	99.857	34,9500	62227,5829	2017989,9552	32,4291875
17	0,00037	0,99963	99.856	36,9467	60414,5242	1955762,3724	32,3723872
18	0,00037	0,99963	99.855	36,9464	58654,2907	1895347,8482	32,3138824
19	0,00037	0,99963	99.854	36,9460	56945,3432	1836693,5575	32,2536217
20	0,00037	0,99963	99.853	36,9456	55286,1875	1779748,2143	32,1915526
21	0,00036	0,99964	99.852	35,9467	53675,3728	1724462,0268	32,1276208
22	0,00036	0,99964	99.851	35,9464	52111,4908	1670786,6540	32,0617704
23	0,00035	0,99965	99.850	34,9475	50593,1738	1618675,1632	31,9939439
24	0,00035	0,99965	99.849	34,9472	49119,0945	1568081,9894	31,9240818
25	0,00035	0,99965	99.848	34,9468	47687,9638	1518962,8949	31,8521231
26	0,00036	0,99964	99.847	35,9449	46298,5305	1471274,9311	31,778005
27	0,00037	0,99963	99.846	36,9430	44949,5796	1424976,4006	31,7016625
28	0,00039	0,99961	99.845	38,9396	43639,9316	1380026,8210	31,623029
29	0,00041	0,99959	99.844	40,9360	42368,4414	1336386,8895	31,5420356
30	0,00044	0,99956	99.843	43,9309	41133,9973	1294018,4480	31,4586117
31	0,00047	0,99953	99.842	46,9257	39935,5199	1252884,4507	31,3726841
32	0,0005	0,9995	99.841	49,9205	38771,9613	1212948,9308	31,2841778
33	0,00054	0,99946	99.840	53,9136	37642,3040	1174176,9695	31,1930154
34	0,00057	0,99943	99.839	56,9082	36545,5604	1136534,6654	31,0991172

35 0,00062 0,99938 99.838 61,8996 35480,7714 1099989,1050 31,002401 36 0,00066 0,99934 99.837 65,8924 34447,0061 1064508,3336 30,9027824 37 0,00071 0,99929 99.836 70,8836 33443,3605 1030061,3275 30,8001742 38 0,00076 0,99924 99.835 75,8746 32468,9570 996617,9671 30,6944866 39 0,00082 0,99918 99.834 81,8639 31522,9437 964149,0101 30,5856274 40 0,00088 0,99912 99.833 87,8531 30604,4934 932626,0664 30,4735012 41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99877 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,0011 0,99889 99.829 119,7948 27190,6076 815455,0710 29,9903218 45
37 0,00071 0,99929 99.836 70,8836 33443,3605 1030061,3275 30,8001742 38 0,00076 0,99924 99.835 75,8746 32468,9570 996617,9671 30,6944866 39 0,00082 0,99918 99.834 81,8639 31522,9437 964149,0101 30,5856274 40 0,00088 0,99912 99.833 87,8531 30604,4934 932626,0664 30,4735012 41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 <t< td=""></t<>
38 0,00076 0,99924 99.835 75,8746 32468,9570 996617,9671 30,6944866 39 0,00082 0,99918 99.834 81,8639 31522,9437 964149,0101 30,5856274 40 0,00088 0,99912 99.833 87,8531 30604,4934 932626,0664 30,4735012 41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47
39 0,00082 0,99918 99.834 81,8639 31522,9437 964149,0101 30,5856274 40 0,00088 0,99912 99.833 87,8531 30604,4934 932626,0664 30,4735012 41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 <td< td=""></td<>
40 0,00088 0,99912 99.833 87,8531 30604,4934 932626,0664 30,4735012 41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 <t< td=""></t<>
41 0,00095 0,99905 99.832 94,8404 29712,8030 902021,5730 30,35801 42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
42 0,00103 0,99897 99.831 102,8259 28847,0929 872308,7699 30,239053 43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
43 0,00111 0,99889 99.830 110,8113 28006,6061 843461,6770 30,1165259 44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
44 0,0012 0,9988 99.829 119,7948 27190,6076 815455,0710 29,9903218 45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
45 0,0013 0,9987 99.828 129,7764 26398,3840 788264,4634 29,8603302 46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
46 0,0014 0,9986 99.827 139,7578 25629,2427 761866,0793 29,7264375 47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
47 0,00152 0,99848 99.826 151,7356 24882,5110 736236,8367 29,5885266 48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
48 0,00164 0,99836 99.825 163,7130 24157,5360 711354,3257 29,4464769 49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
49 0,00178 0,99822 99.824 177,6868 23453,6839 687196,7897 29,3001642 50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
50 0,00193 0,99807 99.823 192,6584 22770,3392 663743,1058 29,1494607
51 0.00200 0.00701 00.822 208.6280 22106.0044 640072.7667 28.0042244
31 0,00207 0,77771 77.022 200,0200 22100,7044 040972,7007 28,9942344
52 0,00228 0,99772 99.821 227,5920 21462,7994 618865,8623 28,8343497
53 0,00248 0,99752 99.820 247,5537 20837,4610 597403,0629 28,6696667
54 0,0027 0,9973 99.819 269,5114 20230,3425 576565,6019 28,5000415
55 0,00294 0,99706 99.818 293,4650 19640,9130 556335,2593 28,3253258
56 0,00321 0,99679 99.817 320,4127 19068,6571 536694,3463 28,1453667
57 0,00351 0,99649 99.816 350,3543 18513,0745 517625,6892 27,9600069
58 0,00384 0,99616 99.815 383,2898 17973,6793 499112,6148 27,7690843
59 0,0042 0,9958 99.814 419,2190 17449,9999 481138,9355 27,572432
60 0,00459 0,99541 99.813 458,1419 16941,5784 463688,9356 27,369878
61 0,00501 0,99499 99.812 500,0584 16447,9704 446747,3572 27,1612453
62 0,00548 0,99452 99.811 546,9646 15968,7441 430299,3868 26,9463512
63 0,00599 0,99401 99.810 597,8623 15503,4806 414330,6427 26,7250081
64 0,00654 0,99346 99.809 652,7514 15051,7730 398827,1622 26,4970222
65 0,00714 0,99286 99.808 712,6297 14613,2264 383775,3892 26,2621942
66 0,00778 0,99222 99.807 776,4992 14187,4573 369162,1628 26,0203189
67 0,0085 0,9915 99.806 848,3518 13774,0934 354974,7056 25,7711847
68 0,00927 0,99073 99.805 925,1933 13372,7734 341200,6122 25,5145737
69 0,01009 0,98991 99.804 1007,0235 12983,1463 327827,8388 25,2502616
70 0,011 0,989 99.803 1097,8344 12604,8713 314844,6925 24,9780171
71 0,01202 0,98798 99.802 1199,6217 12237,6179 302239,8212 24,6976024
72 0,01312 0,98688 99.801 1309,3911 11881,0648 290002,2033 24,4087721

73 0,0143 0,9847 99.800 1427,1423 11534,9003 278121,1385 24,1112737 74 0,01558 0,98442 99.799 1554,8712 11198,8217 266586,2382 23,804847 75 0,01699 0,98301 99.798 1695,5713 110872,5552 255387,4164 23,4892241 76 0,01856 0,98144 99.797 1852,2362 10555,7555 244514,8812 23,164129 77 0,0203 0,9797 99.796 2025,8634 10248,2055 233959,1258 22,8292774 78 0,02221 0,97779 99.795 2216,4525 9949,6164 223710,9203 22,4843765 79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97336 99.792 2955,8486 9105,0414 194723,2927 21,386316 81 0,02969 99.790 3703,2212 8582,2082 176778,4912 20,588252 83 0,0311		1	1	I				
75 0,01699 0,98301 99.798 1695,5713 10872,5352 255387,4164 23,4892241 76 0,01856 0,98144 99.797 1852,2362 10555,7555 244514,8812 23,164129 77 0,0203 0,9777 99.796 2025,8634 10248,2055 233959,1258 22,8292774 78 0,02221 0,97769 99.795 2216,4525 9949,6164 223710,9203 22,4843765 79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 852,0082 17674,912 20,598251 84 0,04185 0,95815 99.784 4738,9541 8080,3986 159864,1225 197,621765 86	73	0,0143	0,9857	99.800	1427,1423	11534,9003	278121,1385	24,1112737
76 0,01856 0,98144 99.797 1852,2362 10555,7555 244514,8812 23,164129 77 0,0203 0,9797 99.796 2025,8634 10248,2055 233959,1258 22,8292774 78 0,02221 0,97779 99.795 2216,4525 9949,6164 223710,9203 22,4843765 79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96693 99.794 4766,1873 332,1605 168196,2830 20,186394 84 0,04185 0,95815 99.789 4776,1873 882,2082 176778,4912 20,5982525 85 0,04749 0,95251 99.784 4738,9541 808,3986 159864,1225 19,7621765 86	74	0,01558	0,98442	99.799	1554,8712	11198,8217	266586,2382	23,804847
77 0,0203 0,9797 99.796 2025,8634 10248,2055 233959,1258 22,8292774 78 0,02221 0,97779 99.795 2216,4525 9949,6164 223710,9203 22,4843765 79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.792 2955,8486 9105,0414 194723,2927 21,386316 82 0,03307 0,96693 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 8582,2082 176778,4912 20,582525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4401,4980 7853,7101 151774,7239 19,32522662 87	75	0,01699	0,98301	99.798	1695,5713	10872,5352	255387,4164	23,4892241
78 0,02221 0,97779 99.795 2216,4525 9949,6164 223710,9203 22,4843765 79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.792 2955,8486 9105,0414 194723,2927 21,386316 82 0,03711 0,96289 99.791 3300,1000 8839,7601 185618,2513 20,9981292 83 0,03711 0,96289 99.799 3703,2212 8582,2082 176778,4912 20,5982525 84 0,04185 0,95815 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88	76	0,01856	0,98144	99.797	1852,2362	10555,7555	244514,8812	23,164129
79 0,02431 0,97569 99.794 2425,9987 9659,7271 213761,3039 22,1291246 80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.792 2955,8486 9105,0414 194723,2927 21,386316 82 0,03307 0,96693 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 8582,0082 176778,4912 20,5982525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88	77	0,0203	0,9797	99.796	2025,8634	10248,2055	233959,1258	22,8292774
80 0,02674 0,97326 99.793 2668,4727 9378,2841 204101,5768 21,7632111 81 0,02962 0,97038 99.792 2955,8486 9105,0414 194723,2927 21,386316 82 0,03307 0,96693 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 8582,2082 176778,4912 20,5982525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 44738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90	78	0,02221	0,97779	99.795	2216,4525	9949,6164	223710,9203	22,4843765
81 0,02962 0,97038 99.792 2955,8486 9105,0414 194723,2927 21,386316 82 0,03307 0,96693 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 8582,2082 176778,4912 20,5982525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90	79	0,02431	0,97569	99.794	2425,9987	9659,7271	213761,3039	22,1291246
82 0,03307 0,96693 99.791 3300,1000 8839,7601 185618,2513 20,9981097 83 0,03711 0,96289 99.790 3703,2212 8582,2082 176778,4912 20,5982525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91	80	0,02674	0,97326	99.793	2668,4727	9378,2841	204101,5768	21,7632111
83 0,03711 0,96289 99.790 3703,2212 8582,2082 176778,4912 20,5982525 84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.781 13826,6668 6385,3747 101377,3183 15,8764871 92	81	0,02962	0,97038	99.792	2955,8486	9105,0414	194723,2927	21,386316
84 0,04185 0,95815 99.789 4176,1873 8332,1605 168196,2830 20,1863949 85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94	82	0,03307	0,96693	99.791	3300,1000	8839,7601	185618,2513	20,9981097
85 0,04749 0,95251 99.788 4738,9541 8089,3986 159864,1225 19,7621765 86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95	83	0,03711	0,96289	99.790	3703,2212	8582,2082	176778,4912	20,5982525
86 0,05413 0,94587 99.788 5401,4980 7853,7101 151774,7239 19,3252262 87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95	84	0,04185	0,95815	99.789	4176,1873	8332,1605	168196,2830	20,1863949
87 0,0617 0,9383 99.787 6156,8311 7624,8890 143921,0138 18,8751619 88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96	85	0,04749	0,95251	99.788	4738,9541	8089,3986	159864,1225	19,7621765
88 0,0704 0,9296 99.786 7024,9081 7402,7352 136296,1249 18,4115899 89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97	86	0,05413	0,94587	99.788	5401,4980	7853,7101	151774,7239	19,3252262
89 0,08096 0,91904 99.785 8078,5691 7187,0546 128893,3897 17,9341047 90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98	87	0,0617	0,9383	99.787	6156,8311	7624,8890	143921,0138	18,8751619
90 0,0931 0,9069 99.784 9289,8697 6977,6586 121706,3351 17,4422885 91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99	88	0,0704	0,9296	99.786	7024,9081	7402,7352	136296,1249	18,4115899
91 0,10647 0,89353 99.783 10623,8823 6774,3643 114728,6764 16,9357111 92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 <td>89</td> <td>0,08096</td> <td>0,91904</td> <td>99.785</td> <td>8078,5691</td> <td>7187,0546</td> <td>128893,3897</td> <td>17,9341047</td>	89	0,08096	0,91904	99.785	8078,5691	7187,0546	128893,3897	17,9341047
92 0,1211 0,8789 99.782 12083,5975 6576,9938 107954,3121 16,4139294 93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 <td>90</td> <td>0,0931</td> <td>0,9069</td> <td>99.784</td> <td>9289,8697</td> <td>6977,6586</td> <td>121706,3351</td> <td>17,4422885</td>	90	0,0931	0,9069	99.784	9289,8697	6977,6586	121706,3351	17,4422885
93 0,13857 0,86143 99.781 13826,6668 6385,3747 101377,3183 15,8764871 94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.775 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 </td <td>91</td> <td>0,10647</td> <td>0,89353</td> <td>99.783</td> <td>10623,8823</td> <td>6774,3643</td> <td>114728,6764</td> <td>16,9357111</td>	91	0,10647	0,89353	99.783	10623,8823	6774,3643	114728,6764	16,9357111
94 0,15795 0,84205 99.780 15760,2885 6199,3393 94991,9437 15,322914 95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 <td>92</td> <td>0,1211</td> <td>0,8789</td> <td>99.782</td> <td>12083,5975</td> <td>6576,9938</td> <td>107954,3121</td> <td>16,4139294</td>	92	0,1211	0,8789	99.782	12083,5975	6576,9938	107954,3121	16,4139294
95 0,17998 0,82002 99.779 17958,2955 6018,7253 88792,6043 14,7527259 96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 </td <td>93</td> <td>0,13857</td> <td>0,86143</td> <td>99.781</td> <td>13826,6668</td> <td>6385,3747</td> <td>101377,3183</td> <td>15,8764871</td>	93	0,13857	0,86143	99.781	13826,6668	6385,3747	101377,3183	15,8764871
96 0,20594 0,79406 99.779 20548,3998 5843,3746 82773,8791 14,1654241 97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105<	94	0,15795	0,84205	99.780	15760,2885	6199,3393	94991,9437	15,322914
97 0,23015 0,76985 99.778 22963,8563 5673,1340 76930,5045 13,5604948 98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106	95	0,17998	0,82002	99.779	17958,2955	6018,7253	88792,6043	14,7527259
98 0,25194 0,74806 99.777 25137,8202 5507,8546 71257,3705 12,9374094 99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 <td>96</td> <td>0,20594</td> <td>0,79406</td> <td>99.779</td> <td>20548,3998</td> <td>5843,3746</td> <td>82773,8791</td> <td>14,1654241</td>	96	0,20594	0,79406	99.779	20548,3998	5843,3746	82773,8791	14,1654241
99 0,27912 0,72088 99.776 27849,5506 5347,3916 65749,5158 12,2956239 100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 </td <td>97</td> <td>0,23015</td> <td>0,76985</td> <td>99.778</td> <td>22963,8563</td> <td>5673,1340</td> <td>76930,5045</td> <td>13,5604948</td>	97	0,23015	0,76985	99.778	22963,8563	5673,1340	76930,5045	13,5604948
100 0,31072 0,68928 99.776 31002,2565 5191,6048 60402,1242 11,6345767 101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 70343,3207 3978,7391 18768,0212 4,71707768	98	0,25194	0,74806	99.777	25137,8202	5507,8546	71257,3705	12,9374094
101 0,34118 0,65882 99.775 34041,1843 5040,3582 55210,5194 10,9536896 102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	99	0,27912	0,72088	99.776	27849,5506	5347,3916	65749,5158	12,2956239
102 0,37357 0,62643 99.774 37272,6457 4893,5193 50170,1612 10,252368 103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	100	0,31072	0,68928	99.776	31002,2565	5191,6048	60402,1242	11,6345767
103 0,40904 0,59096 99.774 40811,3802 4750,9598 45276,6419 9,5299989 104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	101	0,34118	0,65882	99.775	34041,1843	5040,3582	55210,5194	10,9536896
104 0,44788 0,55212 99.773 44686,3208 4612,5550 40525,6821 8,78595091 105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	102	0,37357	0,62643	99.774	37272,6457	4893,5193	50170,1612	10,252368
105 0,49042 0,50958 99.772 48930,3925 4478,1840 35913,1270 8,01957381 106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	103	0,40904	0,59096	99.774	40811,3802	4750,9598	45276,6419	9,5299989
106 0,537 0,463 99.772 53577,5184 4347,7292 31434,9430 7,23019796 107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	104	0,44788	0,55212	99.773	44686,3208	4612,5550	40525,6821	8,78595091
107 0,58801 0,41199 99.771 58666,6115 4221,0768 27087,2138 6,41713367 108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	105	0,49042	0,50958	99.772	48930,3925	4478,1840	35913,1270	8,01957381
108 0,64387 0,35613 99.771 64239,5796 4098,1159 22866,1370 5,57967072 109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	106	0,537	0,463	99.772	53577,5184	4347,7292	31434,9430	7,23019796
109 0,70505 0,29495 99.771 70343,3207 3978,7391 18768,0212 4,71707768	107	0,58801	0,41199	99.771	58666,6115	4221,0768	27087,2138	6,41713367
	108	0,64387	0,35613	99.771	64239,5796	4098,1159	22866,1370	5,57967072
110 0,77204 0,22796 99.770 77026,7311 3862,8420 14789,2821 3,82860133	109	0,70505	0,29495	99.771	70343,3207	3978,7391	18768,0212	4,71707768
	110	0,77204	0,22796	99.770	77026,7311	3862,8420	14789,2821	3,82860133

111	0,8454	0,1546	99.770	84345,6942	3750,3235	10926,4401	2,91346603
112	0,92575	0,07425	99.770	92362,0835	3641,0851	7176,1166	1,97087306
113	1,0000	0,0000	99.770	99769,9322	3535,0315	3535,0315	1